找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Mining for Business Applications; Longbing Cao,Philip S. Yu,Huaifeng Zhang Book 2009 Springer-Verlag US 2009 Business Decision Making

[复制链接]
查看: 9081|回复: 35
发表于 2025-3-21 19:40:48 | 显示全部楼层 |阅读模式
书目名称Data Mining for Business Applications
编辑Longbing Cao,Philip S. Yu,Huaifeng Zhang
视频video
概述Presents knowledge, techniques and case studies to bridge the gap between business expectations and research outputs.Explores new research issues in data mining, including trust, organizational and so
图书封面Titlebook: Data Mining for Business Applications;  Longbing Cao,Philip S. Yu,Huaifeng Zhang Book 2009 Springer-Verlag US 2009 Business Decision Making
描述.Data Mining for Business Applications. presents the state-of-the-art research and development outcomes on methodologies, techniques, approaches and successful applications in the area. The contributions mark a paradigm shift from “data-centered pattern mining” to “domain driven actionable knowledge discovery” for next-generation KDD research and applications. The contents identify how KDD techniques can better contribute to critical domain problems in theory and practice, and strengthen business intelligence in complex enterprise applications. The volume also explores challenges and directions for future research and development in the dialogue between academia and business..
出版日期Book 2009
关键词Business Decision Making; Business Intelligence; Clustering; Domain Driven Data Mining; Domain Knowledge
版次1
doihttps://doi.org/10.1007/978-0-387-79420-4
isbn_softcover978-1-4419-4635-5
isbn_ebook978-0-387-79420-4
copyrightSpringer-Verlag US 2009
The information of publication is updating

书目名称Data Mining for Business Applications影响因子(影响力)




书目名称Data Mining for Business Applications影响因子(影响力)学科排名




书目名称Data Mining for Business Applications网络公开度




书目名称Data Mining for Business Applications网络公开度学科排名




书目名称Data Mining for Business Applications被引频次




书目名称Data Mining for Business Applications被引频次学科排名




书目名称Data Mining for Business Applications年度引用




书目名称Data Mining for Business Applications年度引用学科排名




书目名称Data Mining for Business Applications读者反馈




书目名称Data Mining for Business Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:19:09 | 显示全部楼层
发表于 2025-3-22 00:27:07 | 显示全部楼层
On Mining Maximal Pattern-Based Clustersion systems and target marketing systems in e-business. However, pattern-based clustering in large databases is still challenging. On the one hand, there can be a huge number of clusters and many of them can be redundant and thus make the pattern-based clustering ineffective. On the other hand, the
发表于 2025-3-22 05:46:59 | 显示全部楼层
Role of Human Intelligence in Domain Driven Data Miningeparation, modeling, evaluation and deployment. Various data mining tasks are dependent on the human user for their execution. These tasks and activities that require human intelligence are not amenable to automation like tasks in other phases such as data preparation or modeling are. Nearly all Dat
发表于 2025-3-22 12:37:57 | 显示全部楼层
Ontology Mining for Personalized Search provide a satisfactory solution for this challenge, because there exists a lot of uncertainties in the local information repositories. In this chapter, we introduce ontology mining, a new methodology, for solving this challenging issue, which aims to discover interesting and useful knowledge in dat
发表于 2025-3-22 13:19:42 | 显示全部楼层
发表于 2025-3-22 17:54:09 | 显示全部楼层
978-1-4419-4635-5Springer-Verlag US 2009
发表于 2025-3-23 00:46:04 | 显示全部楼层
Longbing Cao,Philip S. Yu,Huaifeng ZhangPresents knowledge, techniques and case studies to bridge the gap between business expectations and research outputs.Explores new research issues in data mining, including trust, organizational and so
发表于 2025-3-23 03:40:24 | 显示全部楼层
发表于 2025-3-23 08:24:10 | 显示全部楼层
Large-Scale Interconnected Systems,igm shift from ‘data mining’ to ‘knowledge discovery’, we believe much more thorough efforts are essential for promoting the wide acceptance and employment of knowledge discovery in real-world smart decision making. To this end, we expect a new paradigm shift from ‘data-centered knowledge discovery’
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 01:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表