找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Augmentation, Labelling, and Imperfections; Second MICCAI Worksh Hien V. Nguyen,Sharon X. Huang,Yuan Xue Conference proceedings 2022 T

[复制链接]
楼主: 银河
发表于 2025-3-26 21:02:05 | 显示全部楼层
发表于 2025-3-27 04:29:59 | 显示全部楼层
发表于 2025-3-27 07:37:03 | 显示全部楼层
Andri G. Wibisana,Savitri Nur Setyorinining methods for medical image classification. The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images. We evaluate both standard and state-of-the-art long-tailed learning m
发表于 2025-3-27 09:44:48 | 显示全部楼层
Muhammad Sabaruddin Sinapoy,Susanti Djalantestate-of-the-art ML regression-based CTh estimation method - HerstonNet. We train two models on pairs of brain MRIs and FreeSurfer/DL+DiReCT automatic CTh measurements to investigate the benefits of using DL+DiReCT instead of, the more frequently used, FreeSurfer CTh measurements on the learning cap
发表于 2025-3-27 16:19:20 | 显示全部楼层
Ocean Heat Content and Rising Sea Levelised fashion and identify the most relevant unlabeled samples to annotate next. In addition, our consistency loss uses a modified version of the JSD to further improve model performance. By relying on data transformations rather than on external modules or simple heuristics typically used in uncerta
发表于 2025-3-27 20:31:15 | 显示全部楼层
发表于 2025-3-27 23:49:27 | 显示全部楼层
Atmospheric Circulation and ClimateE) module in the generators of CycleGAN, by embedding semantic information into networks to keep the brain anatomical structure consistent across 6-month and 12-month brain MRI. After that, we train an initial segmentation model on these augmented data to overcome the isointense problem in 6-months
发表于 2025-3-28 04:10:48 | 显示全部楼层
发表于 2025-3-28 09:22:10 | 显示全部楼层
发表于 2025-3-28 14:25:19 | 显示全部楼层
,DeepEdit: Deep Editable Learning for Interactive Segmentation of 3D Medical Images,ion. Once trained, DeepEdit allows clinicians to quickly segment their datasets by using the algorithm in auto segmentation mode or by providing clicks via a user interface (i.e. 3D Slicer, OHIF). We show the value of DeepEdit through evaluation on the PROSTATEx dataset for prostate/prostatic lesion
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-16 17:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表