找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Assimilation; Making Sense of Obse William Lahoz,Boris Khattatov,Richard Menard Book 2010 Springer-Verlag Berlin Heidelberg 2010 Atmos

[复制链接]
查看: 37759|回复: 54
发表于 2025-3-21 16:23:34 | 显示全部楼层 |阅读模式
书目名称Data Assimilation
副标题Making Sense of Obse
编辑William Lahoz,Boris Khattatov,Richard Menard
视频video
概述Includes supplementary material:
图书封面Titlebook: Data Assimilation; Making Sense of Obse William Lahoz,Boris Khattatov,Richard Menard Book 2010 Springer-Verlag Berlin Heidelberg 2010 Atmos
描述.Data assimilation methods were largely developed for operational weather forecasting, but in recent years have been applied to an increasing range of earth science disciplines. This book will set out the theoretical basis of data assimilation with contributions by top international experts in the field. Various aspects of data assimilation are discussed including: theory; observations; models; numerical weather prediction; evaluation of observations and models; assessment of future satellite missions; application to components of the Earth System. References are made to recent developments in data assimilation theory (e.g. Ensemble Kalman filter), and to novel applications of the data assimilation method (e.g. ionosphere, Mars data assimilation)..
出版日期Book 2010
关键词Atmospheric chemistry; Earth System; Meteorology; Ocean; Weather forecasting; algorithm; algorithms; chemis
版次1
doihttps://doi.org/10.1007/978-3-540-74703-1
isbn_softcover978-3-642-42273-7
isbn_ebook978-3-540-74703-1
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Data Assimilation影响因子(影响力)




书目名称Data Assimilation影响因子(影响力)学科排名




书目名称Data Assimilation网络公开度




书目名称Data Assimilation网络公开度学科排名




书目名称Data Assimilation被引频次




书目名称Data Assimilation被引频次学科排名




书目名称Data Assimilation年度引用




书目名称Data Assimilation年度引用学科排名




书目名称Data Assimilation读者反馈




书目名称Data Assimilation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:48:19 | 显示全部楼层
Assimilation of Operational Dataradiation from satellite instruments. Other, recent examples include ground-based GPS (Global Positioning Satellites) and radio-occultation data. The related issues of quality control and data thinning are also covered. Assimilation of time-sequences of observations is discussed. This chapter comple
发表于 2025-3-22 01:51:53 | 显示全部楼层
发表于 2025-3-22 07:35:15 | 显示全部楼层
发表于 2025-3-22 12:10:18 | 显示全部楼层
Variational Assimilation function, called the ., that measures the misfit to the available data. In particular, ., usually abbreviated as ., minimizes the misfit between a temporal sequence of model states and the observations that are available over a given assimilation window. As such, and contrary to the standard Kalman
发表于 2025-3-22 14:47:02 | 显示全部楼层
Ensemble Kalman Filter: Current Status and Potential representative prototype of these methods, and several examples of how advanced properties and applications that have been developed and explored for 4D-Var (four-dimensional variational assimilation) can be adapted to the LETKF without requiring an adjoint model. Although the Ensemble Kalman filte
发表于 2025-3-22 21:02:32 | 显示全部楼层
发表于 2025-3-23 01:17:26 | 显示全部楼层
The Principle of Energetic Consistency in Data Assimilationns requires all the sources of uncertainty – in the initial conditions, the dynamics, and the observations – to be identified and accounted for properly in the data assimilation process. This task is complicated by the fact that the non-linear dynamical system actually being observed is typically an
发表于 2025-3-23 03:59:06 | 显示全部楼层
发表于 2025-3-23 06:38:43 | 显示全部楼层
The Global Observing Systemferent techniques to observe the atmosphere, the ocean and land surfaces. It should be stressed that the various observing systems generally tend to be complementary to one another, and that redundancy where it exists is valuable as it enables cross checking and inter-comparison of data.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 21:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表