找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Analytics; Models and Algorithm Thomas A. Runkler Textbook 20162nd edition Springer Fachmedien Wiesbaden 2016 data mining.knowledge di

[复制链接]
查看: 36782|回复: 43
发表于 2025-3-21 18:54:00 | 显示全部楼层 |阅读模式
书目名称Data Analytics
副标题Models and Algorithm
编辑Thomas A. Runkler
视频video
概述A comprehensive introduction.Enabling the reader to design and implement data analytics solutions for real-world applications.Written by a researcher from industry with substantial experience with rea
图书封面Titlebook: Data Analytics; Models and Algorithm Thomas A. Runkler Textbook 20162nd edition Springer Fachmedien Wiesbaden 2016 data mining.knowledge di
描述This book is a comprehensive introduction to the methods and algorithms of modern data analytics. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world applications. This book has been used for more than ten years in the Data Mining course at the Technical University of Munich. Much of the content is based on the results of industrial research and development projects at Siemens.
出版日期Textbook 20162nd edition
关键词data mining; knowledge discovery; algorithms; forecasting; classification; clustering; business intelligen
版次2
doihttps://doi.org/10.1007/978-3-658-14075-5
isbn_ebook978-3-658-14075-5
copyrightSpringer Fachmedien Wiesbaden 2016
The information of publication is updating

书目名称Data Analytics影响因子(影响力)




书目名称Data Analytics影响因子(影响力)学科排名




书目名称Data Analytics网络公开度




书目名称Data Analytics网络公开度学科排名




书目名称Data Analytics被引频次




书目名称Data Analytics被引频次学科排名




书目名称Data Analytics年度引用




书目名称Data Analytics年度引用学科排名




书目名称Data Analytics读者反馈




书目名称Data Analytics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:46:46 | 显示全部楼层
Clustering,Complex relational clusters can be found by kernelization. Cluster tendency assessment finds out if the data contain clusters at all, and cluster validity measures help identify an appropriate number of clusters. Clustering can also be done by heuristic methods such as the self-organizing map.
发表于 2025-3-22 03:27:38 | 显示全部楼层
发表于 2025-3-22 04:43:24 | 显示全部楼层
Data and Relations,rlap, Dice, Jaccard, Tanimoto). Sequences can be analyzed using sequence relations (like Hamming, Levenshtein, edit distance). Data can be extracted from continuous signals by sampling and quantization. The Nyquist condition allows sampling without loss of information.
发表于 2025-3-22 12:06:14 | 显示全部楼层
Data Preprocessing, different effectiveness and computational complexities: moving statistical measures, discrete linear filters, finite impule response, infinite impulse response. Data features with different ranges often need to be standardized or transformed.
发表于 2025-3-22 16:31:56 | 显示全部楼层
发表于 2025-3-22 18:08:53 | 显示全部楼层
发表于 2025-3-22 21:44:55 | 显示全部楼层
Classification,are presented in detail: the naive Bayes classifier, linear discriminant analysis, the support vector machine (SVM) using the kernel trick, nearest neighbor classifiers, learning vector quantification, and hierarchical classification using regression trees.
发表于 2025-3-23 04:25:36 | 显示全部楼层
ment data analytics solutions for real-world applications. This book has been used for more than ten years in the Data Mining course at the Technical University of Munich. Much of the content is based on the results of industrial research and development projects at Siemens.978-3-658-14075-5
发表于 2025-3-23 09:05:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 02:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表