找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Analysis in Bi-partial Perspective: Clustering and Beyond; Jan W. Owsiński Book 2020 Springer Nature Switzerland AG 2020 Computationa

[复制链接]
查看: 44870|回复: 39
发表于 2025-3-21 19:32:06 | 显示全部楼层 |阅读模式
书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond
编辑Jan W. Owsiński
视频video
概述Offers a valuable resource for all data scientists who wish to broaden their perspective on the fundamental approaches available.Presents a general formulation, properties, examples, and techniques as
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Data Analysis in Bi-partial Perspective: Clustering and Beyond;  Jan W. Owsiński Book 2020 Springer Nature Switzerland AG 2020 Computationa
描述.This book presents the .bi-partial approach. to data analysis, which is both uniquely general and enables the development of techniques for many data analysis problems, including related models and algorithms. It is based on adequate representation of the essential clustering problem: .to group together the similar, and to separate the dissimilar.. This leads to a general objective function and subsequently to a broad class of concrete implementations. Using this basis, a suboptimising procedure can be developed, together with a variety of implementations..This procedure has a striking affinity with the classical hierarchical merger algorithms, while also incorporating the stopping rule, based on the objective function. The approach resolves the cluster number issue, as the solutions obtained include both the content and the number of clusters. Further, it is demonstrated how the bi-partial principle can be effectively applied to a wide variety of problems in data analysis..The book offers a valuable resource for all data scientists who wish to broaden their perspective on basic approaches and essential problems, and to thus find answers to questions that are often overlooked or h
出版日期Book 2020
关键词Computational Intelligence; Cluster Analysis; Data Analysis; Bi-partial Objective Function; Preference A
版次1
doihttps://doi.org/10.1007/978-3-030-13389-4
isbn_softcover978-3-030-13391-7
isbn_ebook978-3-030-13389-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond影响因子(影响力)




书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond影响因子(影响力)学科排名




书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond网络公开度




书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond网络公开度学科排名




书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond被引频次




书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond被引频次学科排名




书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond年度引用




书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond年度引用学科排名




书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond读者反馈




书目名称Data Analysis in Bi-partial Perspective: Clustering and Beyond读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:54:42 | 显示全部楼层
发表于 2025-3-22 03:51:09 | 显示全部楼层
发表于 2025-3-22 05:39:51 | 显示全部楼层
发表于 2025-3-22 11:18:52 | 显示全部楼层
发表于 2025-3-22 16:47:38 | 显示全部楼层
Formulations in Cluster Analysis,it actually arose, that is—from cluster analysis. We shall start from the “leading example” that was presented in Chap. ., Sect. .. Then, we shall present, in a relatively extensive treatment, the bi-partial version of the well known k-means algorithm, and a couple of other potentially applicable versions of the bi-partial clustering formulations.
发表于 2025-3-22 17:43:01 | 显示全部楼层
发表于 2025-3-23 00:56:46 | 显示全部楼层
Final Remarks,ed from the attempt at a truly faithful rendition of the original problem of cluster analysis (“partition into subsets, inside which objects are as close to each other as possible, while those in different subsets are possibly distant”).
发表于 2025-3-23 03:27:57 | 显示全部楼层
发表于 2025-3-23 09:27:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 19:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表