找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Analysis for Direct Numerical Simulations of Turbulent Combustion; From Equation-Based Heinz Pitsch,Antonio Attili Book 2020 Springer

[复制链接]
楼主: 笔记
发表于 2025-3-25 07:11:46 | 显示全部楼层
发表于 2025-3-25 08:47:53 | 显示全部楼层
https://doi.org/10.1007/978-94-011-1510-0bulent combustion DNS data, being inherently multiscale and multivariate, pose many challenges and higher order tensors are a natural abstraction to organise, probe and analyse them. The chapter gives a high-level overview of prominent tensor decomposition methods, their interpretation, algorithmic
发表于 2025-3-25 14:36:37 | 显示全部楼层
A. R. Leitch,J. S. Heslop-Harrisongonal Decomposition (POD) produces optimal representations of the dynamics in the sense of the energy norm. Alternatively, Dynamic Mode Decomposition (DMD) efficiently extracts coherent dynamics based on eigendecompositions of linearized dynamics. An extension to the latter, the Higher Order Dynamic
发表于 2025-3-25 18:50:27 | 显示全部楼层
D. Hernandez-Verdun,P. Roussel,T. Gautier rates, allowing for the investigation of unsteady and dynamic phenomena unlike conventional statistical analyses. The decomposition can be applied for the analysis of data having a broad range of temporal and spatial scales since it identifies structures that characterize the physical phenomena ind
发表于 2025-3-25 21:23:18 | 显示全部楼层
发表于 2025-3-26 02:45:12 | 显示全部楼层
发表于 2025-3-26 07:31:50 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8484-6ng strategies appear which are based on a direct treatment of the now well resolved, but still not fully resolved scalar signals. Along this line, deconvolution or inverse filtering, either based on discrete or iterative operators, is first discussed. Recent results obtained from a direct numerical
发表于 2025-3-26 09:09:50 | 显示全部楼层
发表于 2025-3-26 13:04:20 | 显示全部楼层
发表于 2025-3-26 19:31:43 | 显示全部楼层
Bruce D. McKee,Chia-sin Hong,Siuk Yoonecessary for large eddy simulation (LES). The source data for the model is a direct numerical simulation (DNS) of a reacting flow in a low swirl burner configuration. Filtered quantities taken from the DNS data are used to train a deep neural network (DNN)-based model. An efficient data sampling st
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 14:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表