找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Analysis and Visualization Using Python; Analyze Data to Crea Dr. Ossama Embarak Book 2018 Dr. Ossama Embarak 2018 python.data.visuali

[复制链接]
查看: 53658|回复: 41
发表于 2025-3-21 20:07:02 | 显示全部楼层 |阅读模式
书目名称Data Analysis and Visualization Using Python
副标题Analyze Data to Crea
编辑Dr. Ossama Embarak
视频video
概述Features a detailed business case on effective strategies on data visualization.Covers abstraction of the Series and DataFrames.Includes a business case study in the concluding chapter of the book
图书封面Titlebook: Data Analysis and Visualization Using Python; Analyze Data to Crea Dr. Ossama Embarak Book 2018 Dr. Ossama Embarak 2018 python.data.visuali
描述Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. .Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. .In conclusion, you will complete a detailed case study, where you’ll get a chan
出版日期Book 2018
关键词python; data; visualizations; analysis; bigdata; datascience; plotting; collection
版次1
doihttps://doi.org/10.1007/978-1-4842-4109-7
isbn_softcover978-1-4842-4108-0
isbn_ebook978-1-4842-4109-7
copyrightDr. Ossama Embarak 2018
The information of publication is updating

书目名称Data Analysis and Visualization Using Python影响因子(影响力)




书目名称Data Analysis and Visualization Using Python影响因子(影响力)学科排名




书目名称Data Analysis and Visualization Using Python网络公开度




书目名称Data Analysis and Visualization Using Python网络公开度学科排名




书目名称Data Analysis and Visualization Using Python被引频次




书目名称Data Analysis and Visualization Using Python被引频次学科排名




书目名称Data Analysis and Visualization Using Python年度引用




书目名称Data Analysis and Visualization Using Python年度引用学科排名




书目名称Data Analysis and Visualization Using Python读者反馈




书目名称Data Analysis and Visualization Using Python读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:13:46 | 显示全部楼层
发表于 2025-3-22 02:39:15 | 显示全部楼层
发表于 2025-3-22 05:30:50 | 显示全部楼层
http://image.papertrans.cn/d/image/262657.jpg
发表于 2025-3-22 11:04:11 | 显示全部楼层
Heinz Winking,Johannes Gerdes,Walter Trautd, and structured data. This field of science uses a combination of statistics, mathematics, programming, problem-solving, and data capture to extract insights and information from data. Python provides powerful libraries and mechanisms for data science applications as demonstrated in the following
发表于 2025-3-22 16:49:51 | 显示全部楼层
Neo-X and Neo-Y Chromosomes in , has been described as a raw material for business. The volume of data used in businesses, industries, research organizations, and technological development is massive, and it is rapidly growing every day. The more data we collect and analyze, the more capable we can be in making critical business d
发表于 2025-3-22 20:05:07 | 显示全部楼层
发表于 2025-3-22 23:51:14 | 显示全部楼层
发表于 2025-3-23 03:48:26 | 显示全部楼层
发表于 2025-3-23 07:07:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 13:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表