找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cyclotomic Fields; Serge Lang Textbook 1978 Springer-Verlag, New York Inc. 1978 Fields.Kreiskörper.Prime.algebra.finite field.homomorphism

[复制链接]
楼主: 法官所用
发表于 2025-3-25 05:04:32 | 显示全部楼层
发表于 2025-3-25 08:47:07 | 显示全部楼层
Textbook 1978se Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the
发表于 2025-3-25 12:10:20 | 显示全部楼层
0072-5285 arious p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the 978-1-4612-9947-9978-1-4612-9945-5Series ISSN 0072-5285 Series E-ISSN 2197-5612
发表于 2025-3-25 16:26:57 | 显示全部楼层
Stickelberger Ideals and Bernoulli Distributions,), of higher .-groups (Coates-Sinnott [Co 1], [Co 2], [C-S]) has led to purely algebraic theorems concerned with group rings and certain ideals, formed with Bernoulli numbers (somewhat generalized, as by Leopoldt). Such ideals happen to annihilate these groups, but in many cases it is still conjectu
发表于 2025-3-25 22:21:25 | 显示全部楼层
The ,-adic ,-function,more convenient as a basic definition, than Iwasawa’s previous formulation in terms of power series. The connection is made via Example 2 of §1. We derive further analytic properties, which allow us to make explicit its value at . = 1, thereby obtaining Leopoldt’s formula in the .-adic case, analogo
发表于 2025-3-26 02:56:46 | 显示全部楼层
发表于 2025-3-26 06:37:51 | 显示全部楼层
发表于 2025-3-26 11:36:38 | 显示全部楼层
发表于 2025-3-26 13:52:42 | 显示全部楼层
发表于 2025-3-26 19:44:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 13:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表