找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: Addiction
发表于 2025-3-25 03:21:34 | 显示全部楼层
,Flash-Splat: 3D Reflection Removal with Flash Cues and Gaussian Splats,e real-world experiments, we demonstrate our method, Flash-Splat, accurately reconstructs both transmitted and reflected scenes in 3D. Our method outperforms existing 3D reflection separation methods, which do not leverage illumination control, by a large margin.
发表于 2025-3-25 08:09:39 | 显示全部楼层
发表于 2025-3-25 13:47:59 | 显示全部楼层
0302-9743 reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation..978-3-031-73006-1978-3-031-73007-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-25 18:34:10 | 显示全部楼层
发表于 2025-3-25 22:15:07 | 显示全部楼层
发表于 2025-3-26 01:51:34 | 显示全部楼层
https://doi.org/10.1007/978-3-319-01119-6in improved image quality. Remarkably, by combining the weights of models trained with efficient LoRA and full training, we achieve a new state-of-the-art one-step diffusion model, achieving an FID of 8.14 and surpassing all GAN-based and multi-step Stable Diffusion models.
发表于 2025-3-26 06:06:12 | 显示全部楼层
Karen Insa Wolf,Stefan Goetze,Frank Wallhoffmodel benchmarks demonstrate that DiffSurf can generate shapes with greater diversity and higher quality than previous generative models. Furthermore, when applied to the task of single-image 3D human mesh recovery, DiffSurf achieves accuracy comparable to prior techniques at a near real-time rate.
发表于 2025-3-26 10:44:06 | 显示全部楼层
SwiftBrush V2: Make Your One-Step Diffusion Model Better Than Its Teacher,in improved image quality. Remarkably, by combining the weights of models trained with efficient LoRA and full training, we achieve a new state-of-the-art one-step diffusion model, achieving an FID of 8.14 and surpassing all GAN-based and multi-step Stable Diffusion models.
发表于 2025-3-26 15:07:31 | 显示全部楼层
发表于 2025-3-26 19:31:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 15:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表