找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: Coronary-Artery
发表于 2025-3-30 08:22:48 | 显示全部楼层
发表于 2025-3-30 15:02:02 | 显示全部楼层
,Bayesian Self-training for Semi-supervised 3D Segmentation,rtite matching algorithm, we extend the method to semi-supervised 3D instance segmentation, and finally, with the same building blocks, to dense 3D visual grounding. We demonstrate state-of-the-art results for our semi-supervised method on SemanticKITTI and ScribbleKITTI for 3D semantic segmentation
发表于 2025-3-30 19:57:54 | 显示全部楼层
,Motion and Structure from Event-Based Normal Flow,ometric error term, as an alternative to the full (optical) flow in solving a family of geometric problems that involve instantaneous first-order kinematics and scene geometry. Furthermore, we develop a fast linear solver and a continuous-time nonlinear solver on top of the proposed geometric error
发表于 2025-3-30 23:28:32 | 显示全部楼层
发表于 2025-3-31 02:55:03 | 显示全部楼层
,Learning to Complement and to Defer to Multiple Users,Comprehensive evaluations across real-world and synthesized datasets demonstrate LECODU’s superior performance compared to state-of-the-art HAI-CC methods. Remarkably, even when relying on unreliable users with high rates of label noise, LECODU exhibits significant improvement over both human decisi
发表于 2025-3-31 07:45:13 | 显示全部楼层
发表于 2025-3-31 09:19:10 | 显示全部楼层
发表于 2025-3-31 17:08:38 | 显示全部楼层
,Multi-sentence Grounding for Long-Term Instructional Video,ltaneously, as a result, the model shows superior performance on a series of multi-sentence grounding tasks, surpassing existing state-of-the-art methods by a significant margin on three public benchmarks, namely, 9.0% on HT-Step, 5.1% on HTM-Align and 1.9% on CrossTask. All codes, models, and the r
发表于 2025-3-31 20:27:52 | 显示全部楼层
,Do Generalised Classifiers , on Human Drawn Sketches?,straction levels. This is achieved by learning a codebook of abstraction-specific prompt biases, a weighted combination of which facilitates the representation of sketches across abstraction levels – low abstract edge-maps, medium abstract sketches in TU-Berlin, and highly abstract doodles in QuickD
发表于 2025-3-31 21:50:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 08:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表