找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: 正当理由
发表于 2025-3-30 08:21:03 | 显示全部楼层
发表于 2025-3-30 14:14:06 | 显示全部楼层
,Free Lunch for Gait Recognition: A Novel Relation Descriptor,on the training set’s identity count. To address this, we propose Farthest gait-Anchor Selection to identify the most discriminative gait anchors and an Orthogonal Regularization Loss to increase diversity within gait anchors. Compared to individual-specific features extracted from the backbone, our
发表于 2025-3-30 20:00:39 | 显示全部楼层
发表于 2025-3-30 21:56:40 | 显示全部楼层
,Adaptive Correspondence Scoring for Unsupervised Medical Image Registration,ustrate the versatility and effectiveness of our method, we tested our framework on three representative registration architectures across three medical image datasets along with other baselines. Our adaptive framework consistently outperforms other methods both quantitatively and qualitatively. Pai
发表于 2025-3-31 02:32:22 | 显示全部楼层
,Watch Your Steps: Local Image and Scene Editing by Text Instructions,elevance map conveys the importance of changing each pixel to achieve an edit, and guides downstream modifications, ensuring that pixels irrelevant to the edit remain unchanged. With the relevance maps of multiview posed images, we can define the ., defining the 3D region within which modifications
发表于 2025-3-31 06:53:01 | 显示全部楼层
,Forget More to Learn More: Domain-Specific Feature Unlearning for Semi-supervised and Unsupervised aiming to learn domain-specific features. This involves minimizing classification loss for in-domain images and maximizing uncertainty loss for out-of-domain images. Subsequently, we transform the images into a new space, strategically unlearning (forgetting) the domain-specific representations whi
发表于 2025-3-31 10:27:36 | 显示全部楼层
发表于 2025-3-31 16:36:27 | 显示全部楼层
Human-in-the-Loop Visual Re-ID for Population Size Estimation,0% using CV alone to less than 20% by vetting a fraction (often less than 0.002%) of the total pairs. The cost of vetting reduces with the increase in accuracy and provides a practical approach for population size estimation within a desired tolerance when deploying Re-ID systems. (Code available at
发表于 2025-3-31 18:59:52 | 显示全部楼层
发表于 2025-4-1 01:12:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 18:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表