找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: 我没有辱骂
发表于 2025-3-23 13:46:51 | 显示全部楼层
发表于 2025-3-23 14:25:48 | 显示全部楼层
发表于 2025-3-23 19:36:36 | 显示全部楼层
发表于 2025-3-23 22:23:39 | 显示全部楼层
,Content-Aware Radiance Fields: Aligning Model Complexity with Scene Intricacy Through Learned Bitwint 3D content by that training models for each individual scene. This unique characteristic of scene representation and per-scene training distinguishes radiance field models from other neural models, because complex scenes necessitate models with higher representational capacity and vice versa. In
发表于 2025-3-24 02:32:57 | 显示全部楼层
发表于 2025-3-24 08:39:29 | 显示全部楼层
发表于 2025-3-24 12:53:19 | 显示全部楼层
Event Camera Data Dense Pre-training,mera data. Our approach utilizes solely event data for training..Transferring achievements from dense RGB pre-training directly to event camera data yields subpar performance. This is attributed to the spatial sparsity inherent in an event image (converted from event data), where many pixels do not
发表于 2025-3-24 16:48:13 | 显示全部楼层
,Distractors-Immune Representation Learning with Cross-Modal Contrastive Regularization for Change Cd viewpoint changes). Under these distractors, unchanged objects often appear pseudo changes about location and scale, and certain objects might overlap others, resulting in perturbational and discrimination-degraded features between two images. However, most existing methods directly capture the di
发表于 2025-3-24 21:54:08 | 显示全部楼层
Rethinking Image-to-Video Adaptation: An Object-Centric Perspective,mage-to-video adaptation paradigms use lightweight adapters for temporal modeling on top of the spatial module. However, these attempts are subject to limitations in efficiency and interpretability. In this paper, we propose a novel and efficient image-to-video adaptation strategy from the object-ce
发表于 2025-3-25 02:51:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 01:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表