找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: Waterproof
发表于 2025-3-30 12:00:48 | 显示全部楼层
发表于 2025-3-30 13:03:00 | 显示全部楼层
发表于 2025-3-30 18:27:19 | 显示全部楼层
iMatching: Imperative Correspondence Learning,try and 3D reconstruction. Despite recent progress in data-driven models, feature correspondence learning is still limited by the lack of accurate per-pixel correspondence labels. To overcome this difficulty, we introduce a new self-supervised scheme, imperative learning (IL), for training feature c
发表于 2025-3-30 21:12:21 | 显示全部楼层
,COSMU: Complete 3D Human Shape from Monocular Unconstrained Images,tive of this work is to reproduce high-quality details in regions of the reconstructed human body that are not visible in the input target. The proposed methodology addresses the limitations of existing approaches for reconstructing 3D human shapes from a single image, which cannot reproduce shape d
发表于 2025-3-31 04:32:25 | 显示全部楼层
MAP-ADAPT: Real-Time Quality-Adaptive Semantic 3D Maps,oal-oriented navigation or object interaction and manipulation). Commonly, 3D semantic reconstruction systems capture the entire scene in the same level of detail. However, certain tasks (.., object interaction) require a fine-grained and high-resolution map, particularly if the objects to interact
发表于 2025-3-31 07:33:34 | 显示全部楼层
发表于 2025-3-31 09:16:55 | 显示全部楼层
发表于 2025-3-31 16:20:52 | 显示全部楼层
Open Vocabulary Multi-label Video Classification,ect detection and image segmentation. Some recent works have focused on extending VLMs to open vocabulary . action classification in videos. However, previous methods fall short in holistic video understanding which requires the ability to . e.g., . in the video in an open vocabulary setting. We for
发表于 2025-3-31 20:12:23 | 显示全部楼层
,Optimal Transport of Diverse Unsupervised Tasks for Robust Learning from Noisy Few-Shot Data,ansing offers a viable solution to address noisy labels in the general learning settings, it exacerbates information loss in FSL due to limited training data, resulting in inadequate model training. To best recover the underlying task manifold corrupted by the noisy labels, we resort to learning fro
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 07:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表