找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
查看: 46530|回复: 63
发表于 2025-3-21 19:14:46 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2024
副标题18th European Confer
编辑Aleš Leonardis,Elisa Ricci,Gül Varol
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic
描述.The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation..
出版日期Conference proceedings 2025
关键词artificial intelligence; computer networks; computer systems; computer vision; education; Human-Computer
版次1
doihttps://doi.org/10.1007/978-3-031-73235-5
isbn_softcover978-3-031-73234-8
isbn_ebook978-3-031-73235-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computer Vision – ECCV 2024影响因子(影响力)




书目名称Computer Vision – ECCV 2024影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2024网络公开度




书目名称Computer Vision – ECCV 2024网络公开度学科排名




书目名称Computer Vision – ECCV 2024被引频次




书目名称Computer Vision – ECCV 2024被引频次学科排名




书目名称Computer Vision – ECCV 2024年度引用




书目名称Computer Vision – ECCV 2024年度引用学科排名




书目名称Computer Vision – ECCV 2024读者反馈




书目名称Computer Vision – ECCV 2024读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:40:51 | 显示全部楼层
发表于 2025-3-22 03:14:38 | 显示全部楼层
发表于 2025-3-22 07:36:12 | 显示全部楼层
,SLEDGE: Synthesizing Driving Environments with Generative Models and Rule-Based Traffic, able to generate agent bounding boxes and lane graphs. The model’s outputs serve as an initial state for rule-based traffic simulation. The unique properties of the entities to be generated for SLEDGE, such as their connectivity and variable count per scene, render the naive application of most mod
发表于 2025-3-22 11:35:21 | 显示全部楼层
,AFreeCA: Annotation-Free Counting for All,orks to count objects from specific classes (such as humans or penguins), and counting objects from diverse categories remains a challenge. The availability of robust text-to-image latent diffusion models (LDMs) raises the question of whether these models can be utilized to generate counting dataset
发表于 2025-3-22 14:33:50 | 显示全部楼层
,Adversarially Robust Distillation by Reducing the Student-Teacher Variance Gap,versarially robust knowledge distillation has emerged as a principle strategy, facilitating the transfer of robustness from a large-scale teacher model to a lightweight student model. However, existing works focus solely on sample-to-sample alignment of features or predictions between the teacher an
发表于 2025-3-22 19:50:13 | 显示全部楼层
,: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation,h 2D diffusion has achieved success, a unified 3D diffusion pipeline remains unsettled. This paper introduces a novel framework called.to address this gap and enable fast, high-quality, and generic conditional 3D generation. Our approach harnesses a 3D-aware architecture and variational autoencoder
发表于 2025-3-22 22:13:03 | 显示全部楼层
,Hierarchical Temporal Context Learning for Camera-Based Semantic Scene Completion,stream solutions generally leverage temporal information by roughly stacking history frames to supplement the current frame, such straightforward temporal modeling inevitably diminishes valid clues and increases learning difficulty. To address this problem, we present ., a novel .ierarchical .empora
发表于 2025-3-23 04:47:03 | 显示全部楼层
,Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration,on approaches have succeeded, leveraging the intrinsic symmetry of point cloud data, including rotation equivariance, has received insufficient attention. This prohibits the model from learning effectively, resulting in a requirement for more training data and increased model complexity. To address
发表于 2025-3-23 09:15:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 08:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表