找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: centipede
发表于 2025-3-30 10:40:50 | 显示全部楼层
发表于 2025-3-30 14:11:38 | 显示全部楼层
发表于 2025-3-30 20:12:29 | 显示全部楼层
发表于 2025-3-30 23:53:43 | 显示全部楼层
https://doi.org/10.1007/978-3-319-47334-5esses. In the early route, intermediate outputs are consolidated via an anti-redundancy operation, enhancing their compatibility for subsequent interactions; thereby in the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead and regulate these fai
发表于 2025-3-31 04:07:00 | 显示全部楼层
Tuğba Koçak,Aytuğ Altundağ,Thomas Hummele adaptation to fail in Mono 3Det. To handle this problem, we propose a novel .cular .est-.ime .daptation (.) method, based on two new strategies. 1) Reliability-driven adaptation: we empirically find that . and the optimization of high-score objects can .. Thus, we devise a self-adaptive strategy t
发表于 2025-3-31 06:35:17 | 显示全部楼层
发表于 2025-3-31 10:55:29 | 显示全部楼层
发表于 2025-3-31 14:05:22 | 显示全部楼层
Serge Yan Landau,Giovanni Molleenabling the unified color NeRF reconstruction. Besides the view-independent color correction module for external differences, we predict a view-dependent function to minimize the color residual (including, .., specular and shading) to eliminate the impact of inherent attributes. We further describe
发表于 2025-3-31 17:30:26 | 显示全部楼层
Zoochory: The Dispersal Of Plants By Animals support multi-task training. Tested across ten diverse 3D-VL datasets, . demonstrates impressive performance on these tasks, setting new records on most benchmarks. Particularly, . improves the state-of-the-art on ScanNet200 by 4.9% (AP25), ScanRefer by 5.4% (acc@0.5), Multi3DRefer by 11.7% (F1@0.5
发表于 2025-3-31 23:22:05 | 显示全部楼层
Zoochory: The Dispersal Of Plants By Animalsing a minimal number of models to draw a more optimized-averaged model. We demonstrate the efficacy of Model Stock with fine-tuned models based upon pre-trained CLIP architectures, achieving remarkable performance on both ID and OOD tasks on the standard benchmarks, all while barely bringing extra c
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 07:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表