找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: malignant
发表于 2025-3-30 09:24:47 | 显示全部楼层
C. Toker,B. Uzun,F. O. Ceylan,C. Iktennabled through a bidirectional cross-attention mechanism. The approach offers multiple advantages - (a) easy to implement on standard ML accelerators (GPUs/TPUs) via standard high-level operators, (b) applicable to standard ViT and its variants, thus generalizes to various tasks, (c) can handle diff
发表于 2025-3-30 13:40:48 | 显示全部楼层
,Learning Pseudo 3D Guidance for View-Consistent Texturing with 2D Diffusion, on learned .seudo .D .uidance. The key idea of P3G is to first learn a coarse but consistent texture, to serve as a global semantics guidance for encouraging the consistency between images generated on different views. To this end, we incorporate pre-trained text-to-image diffusion models and multi
发表于 2025-3-30 17:41:31 | 显示全部楼层
发表于 2025-3-30 22:06:58 | 显示全部楼层
,SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data,o combine features from both branches. Experiments on the RADIal dataset show that our SparseRadNet exceeds state-of-the-art (SOTA) performance in object detection and achieves close to SOTA accuracy in freespace segmentation, meanwhile using sparse subsampled input data.
发表于 2025-3-31 04:19:30 | 显示全部楼层
发表于 2025-3-31 08:56:53 | 显示全部楼层
发表于 2025-3-31 13:00:09 | 显示全部楼层
,Explain via Any Concept: Concept Bottleneck Model with Open Vocabulary Concepts,ifier on the downstream dataset; (3) Reconstructing the trained classification head via any set of user-desired textual concepts encoded by CLIP’s text encoder. To reveal potentially missing concepts from users, we further propose to iteratively find the closest concept embedding to the residual par
发表于 2025-3-31 15:31:35 | 显示全部楼层
发表于 2025-3-31 19:57:09 | 显示全部楼层
,Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Modelscts the missing embedding through prompt tuning, leveraging information from available modalities. We evaluate our approach on several multimodal benchmark datasets and demonstrate its effectiveness and robustness across various scenarios of missing modalities.
发表于 2025-4-1 00:13:11 | 显示全部楼层
,Improving Diffusion Models for Authentic Virtual Try-on in the Wild, layer. In addition, we provide detailed textual prompts for both garment and person images to enhance the authenticity of the generated visuals. Finally, we present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity. Our experimental
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 01:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表