找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision and Image Processing; 8th International Co Harkeerat Kaur,Vinit Jakhetiya,Sanjeev Kumar Conference proceedings 2024 The Edi

[复制链接]
楼主: BOUT
发表于 2025-3-23 13:45:29 | 显示全部楼层
,Robust Unsupervised Geo-Spatial Change Detection Algorithm for SAR Images, unsupervised grid graph generation algorithm specifically designed for change detection using Synthetic Aperture Radar (SAR) images. The proposed technique encompasses a multi-step process: starting with an improved log-ratio based difference image generation, followed by shortest path vector compu
发表于 2025-3-23 16:33:42 | 显示全部楼层
发表于 2025-3-23 21:12:15 | 显示全部楼层
发表于 2025-3-24 01:23:16 | 显示全部楼层
发表于 2025-3-24 04:02:29 | 显示全部楼层
发表于 2025-3-24 08:37:14 | 显示全部楼层
发表于 2025-3-24 11:17:40 | 显示全部楼层
MuSTAT: Face Ageing Using Multi-scale Target Age Style Transfer,age gap. Although this can be solved using data collected over long age spans, it is challenging and tedious. This work proposes a multi-scale target age-based style face ageing model using an encoder-decoder architecture to generate high-fidelity face images under ageing. Further, we propose using
发表于 2025-3-24 15:09:41 | 显示全部楼层
,Efficient Contextual Feature Network for Single Image Super Resolution,g feature utilization through complex layer connections. However, these methods may not be suitable for resource-constrained devices due to their computational demands. We propose a novel approach called Efficient Contextual Feature Network (ECFN) to address this issue. ECFN utilizes two convolution
发表于 2025-3-24 20:22:22 | 显示全部楼层
T-Fusion Net: A Novel Deep Neural Network Augmented with Multiple Localizations Based Spatial Attenworks. Nonetheless, the growing complexity of datasets and the ongoing pursuit of enhanced performance necessitate innovative approaches. In this study, we introduce a novel deep neural network, referred to as the “T-Fusion Net,” which incorporates multiple spatial attention mechanisms based on loca
发表于 2025-3-24 23:51:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 23:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表