找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Logistics; 15th International C Alexander Garrido,Carlos D. Paternina-Arboleda,Ste Conference proceedings 2024 The Editor(s)

[复制链接]
楼主: enamel
发表于 2025-3-28 17:22:42 | 显示全部楼层
发表于 2025-3-28 20:29:25 | 显示全部楼层
Aktueller Stand der klinischen Anaesthesiec-related data (including weather conditions, significant locations, and event schedules) through social network analysis to refine traffic prediction accuracy, and (3) presenting a method applicable to partially observable traffic situations. The methodology integrates advanced deep learning techni
发表于 2025-3-28 23:10:57 | 显示全部楼层
Vom Störungsbild zur Akupunkturbehandlungoptimisation of sub-problems with a standard solver. The approach aims to find robust solutions that account for uncertainties in the number of available quay cranes at each time period based on some possible scenarios. We conduct extensive experiments using two alternative algorithms. One is a meth
发表于 2025-3-29 05:27:30 | 显示全部楼层
发表于 2025-3-29 07:21:36 | 显示全部楼层
Alexander Garrido,Carlos D. Paternina-Arboleda,Ste
发表于 2025-3-29 12:45:29 | 显示全部楼层
Intelligent System and Framework for Integrating Machine Learning with Software Development for Predk Marketing Dataset, with results validated by standard quality metrics. Additionally, a user-friendly dashboard and REST API have been developed to facilitate efficient client identification and model deployment. The V-model is applied to ensure rigorous testing and validation throughout the projec
发表于 2025-3-29 18:51:35 | 显示全部楼层
Enhancing the Operationalization of SCRES-Based Simulation Models with AI Algorithms: A Preliminary ms into DES models. The research delves into several categories of AI algorithms that can learn from successive iterations of DES models. Based on this exploratory analysis, it is suggested that neural networks, particularly backpropagation, Kolmogorov-Arnold, and reinforcement learning algorithms,
发表于 2025-3-29 19:51:40 | 显示全部楼层
发表于 2025-3-30 00:42:05 | 显示全部楼层
发表于 2025-3-30 07:00:08 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 22:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表