找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Circles, Spheres and Spherical Geometry; Hiroshi Maehara,Horst Martini Textbook 2024 The Editor(s) (if applicable) and The Author(s), unde

[复制链接]
查看: 33360|回复: 51
发表于 2025-3-21 20:02:38 | 显示全部楼层 |阅读模式
书目名称Circles, Spheres and Spherical Geometry
编辑Hiroshi Maehara,Horst Martini
视频videohttp://file.papertrans.cn/243/242124/242124.mp4
概述Presents cross-connections of geometry of circles and spherical geometry from various points of view.Motivates readers to derive own new results.Includes solutions to selected exercises
丛书名称Birkhäuser Advanced Texts‘ Basler Lehrbücher
图书封面Titlebook: Circles, Spheres and Spherical Geometry;  Hiroshi Maehara,Horst Martini Textbook 2024 The Editor(s) (if applicable) and The Author(s), unde
描述.This textbook focuses on the geometry of circles, spheres, and spherical geometry. Various classic themes are used as introductory and motivating topics...The book begins very simply for the reader in the first chapter discussing the notions of inversion and stereographic projection. Here, various classical topics and theorems such as Steiner cycles, inversion, Soddy‘s hexlet, stereographic projection and Poncelet‘s porism are discussed. The book then delves into Bend formulas and the relation of radii of circles, focusing on Steiner circles, mutually tangent four circles in the plane and other related notions. Next, some fundamental concepts of graph theory are explained. The book then proceeds to explore orthogonal-cycle representation of quadrangulations, giving detailed discussions of the Brightwell-Scheinerman theorem (an extension of the Koebe-Andreev-Thurston theorem), Newton’s 13-balls-problem, Casey’s theorem (an extension of Ptolemy’s theorem) and its generalizations. The remainder of the book is devoted to spherical geometry including a chapter focusing on geometric probability on the sphere...The book also contains new results of the authors and insightful notes on the
出版日期Textbook 2024
关键词Spherical Geometry; Geodesic Segments; Spherical Polygon; Geometry of Circles and Spheres; Great Circle;
版次1
doihttps://doi.org/10.1007/978-3-031-62776-7
isbn_softcover978-3-031-62778-1
isbn_ebook978-3-031-62776-7Series ISSN 1019-6242 Series E-ISSN 2296-4894
issn_series 1019-6242
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Circles, Spheres and Spherical Geometry影响因子(影响力)




书目名称Circles, Spheres and Spherical Geometry影响因子(影响力)学科排名




书目名称Circles, Spheres and Spherical Geometry网络公开度




书目名称Circles, Spheres and Spherical Geometry网络公开度学科排名




书目名称Circles, Spheres and Spherical Geometry被引频次




书目名称Circles, Spheres and Spherical Geometry被引频次学科排名




书目名称Circles, Spheres and Spherical Geometry年度引用




书目名称Circles, Spheres and Spherical Geometry年度引用学科排名




书目名称Circles, Spheres and Spherical Geometry读者反馈




书目名称Circles, Spheres and Spherical Geometry读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:27:36 | 显示全部楼层
发表于 2025-3-22 03:26:11 | 显示全部楼层
发表于 2025-3-22 07:56:46 | 显示全部楼层
发表于 2025-3-22 12:01:40 | 显示全部楼层
https://doi.org/10.1007/978-1-137-05113-4, we show that among cyclic .-gons inscribed in a cap of fixed spherical radius, regular .-gons have the maximum perimeter, and among the .-gons on . with fixed perimeter, regular .-gons have the maximum area.
发表于 2025-3-22 15:17:06 | 显示全部楼层
发表于 2025-3-22 18:46:47 | 显示全部楼层
发表于 2025-3-22 23:20:16 | 显示全部楼层
发表于 2025-3-23 01:45:26 | 显示全部楼层
Spherical Geometry III,, we show that among cyclic .-gons inscribed in a cap of fixed spherical radius, regular .-gons have the maximum perimeter, and among the .-gons on . with fixed perimeter, regular .-gons have the maximum area.
发表于 2025-3-23 09:09:11 | 显示全部楼层
Quartets on a Sphere,ctually, any region on a sphere contains a quartet whose six distances determine the radius of the sphere uniquely. Moreover, we present an equation to judge if a given quartet can be a quartet on a sphere of a suitable radius.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 21:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表