找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication; Christian Rohde Book 2009 Springer-Verlag Berlin Heidelberg 2009 Calabi

[复制链接]
查看: 51985|回复: 49
发表于 2025-3-21 18:59:50 | 显示全部楼层 |阅读模式
书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication
编辑Christian Rohde
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication;  Christian Rohde Book 2009 Springer-Verlag Berlin Heidelberg 2009 Calabi
描述Calabi-Yau manifolds have been an object of extensive research during the last two decades. One of the reasons is the importance of Calabi-Yau 3-manifolds in modern physics - notably string theory. An interesting class of Calabi-Yau manifolds is given by those with complex multiplication (CM). Calabi-Yau manifolds with CM are also of interest in theoretical physics, e. g. in connection with mirror symmetry and black hole attractors. It is the main aim of this book to construct families of Calabi-Yau 3-manifolds with dense sets of ?bers with complex multiplication. Most - amples in this book are constructed using families of curves with dense sets of ?bers with CM. The contents of this book can roughly be divided into two parts. The ?rst six chapters deal with families of curves with dense sets of CM ?bers and introduce the necessary theoretical background. This includes among other things several aspects of Hodge theory and Shimura varieties. Using the ?rst part, families of Calabi-Yau 3-manifolds with dense sets of ?bers withCM are constructed in the remaining ?ve chapters. In the appendix one ?nds examples of Calabi-Yau 3-manifolds with complex mul- plication which are not necess
出版日期Book 2009
关键词Calabi-Yau manifolds; Complex multiplication; Shimura varieties; Variations of Hodge structures; manifol
版次1
doihttps://doi.org/10.1007/978-3-642-00639-5
isbn_softcover978-3-642-00638-8
isbn_ebook978-3-642-00639-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication影响因子(影响力)




书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication影响因子(影响力)学科排名




书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication网络公开度




书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication网络公开度学科排名




书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication被引频次




书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication被引频次学科排名




书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication年度引用




书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication年度引用学科排名




书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication读者反馈




书目名称Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:06:39 | 显示全部楼层
发表于 2025-3-22 01:36:50 | 显示全部楼层
Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication978-3-642-00639-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 07:33:02 | 显示全部楼层
发表于 2025-3-22 09:08:21 | 显示全部楼层
978-3-642-00638-8Springer-Verlag Berlin Heidelberg 2009
发表于 2025-3-22 15:08:16 | 显示全部楼层
发表于 2025-3-22 20:24:22 | 显示全部楼层
发表于 2025-3-22 22:47:41 | 显示全部楼层
An Introduction to Hodge Structures and Shimura Varieties,
发表于 2025-3-23 03:38:55 | 显示全部楼层
The Galois Group Decomposition of the Hodge Structure,
发表于 2025-3-23 07:51:23 | 显示全部楼层
Examples of Families with Dense Sets of Complex Multiplication Fibers,
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 07:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表