找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cryptography for Secure Encryption; Robert G. Underwood Textbook 2022 Springer Nature Switzerland AG 2022 automatic sequences.cryptography

[复制链接]
楼主: 不同
发表于 2025-3-23 11:23:55 | 显示全部楼层
发表于 2025-3-23 17:00:05 | 显示全部楼层
Conclusions & Future Directions,In this chapter we show how public key cryptosystems can be used to create “digital” signatures.
发表于 2025-3-23 19:32:34 | 显示全部楼层
Location Methods and Impairments,The Vernam cipher of Section . is the only cryptosystem that has perfect secrecy (Definition .), because the key is a random sequence of bits of the same length as the message (Proposition .).
发表于 2025-3-23 22:32:44 | 显示全部楼层
Conclusions & Future Directions,AES and other symmetric key cryptosystems are in wide use because they transmit data much faster than public key cryptosystems (e.g., RSA), but they need a shared secret key. Moreover, the Blum–Micali and Blum–Blum–Shub bit generators require both Alice and Bob to share an initial key consisting of a finite string of random bits.
发表于 2025-3-24 06:19:52 | 显示全部楼层
Conclusions & Future Directions,The Diffie–Hellman protocol uses the group . to exchange keys. Other groups can be employed in a Diffie–Hellman-type protocol. For instance, we could use an elliptic curve group.
发表于 2025-3-24 10:25:26 | 显示全部楼层
Location Methods and Impairments,Let . be a field not of characteristic 2. Let .. denote the multiplicative group of non-zero elements of ..
发表于 2025-3-24 12:11:34 | 显示全部楼层
Information Theory and Entropy,Let . be a fixed probability space. Let . = {.., .., .., …, ..} be a finite set, and let . :  Ω → . be a random variable with distribution function .. : . → [0, 1], ..
发表于 2025-3-24 18:30:25 | 显示全部楼层
发表于 2025-3-24 19:23:58 | 显示全部楼层
Algebraic Foundations: Groups,Algebraic concepts such as groups, rings, and fields are essential for the study of symmetric key and public key cryptography.
发表于 2025-3-25 02:11:03 | 显示全部楼层
Algebraic Foundations: Rings and Fields,In contrast to a group, a ring is a set together with two binary operations.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 21:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表