找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cryptography and Lattices; International Confer Joseph H. Silverman Conference proceedings 2001 Springer-Verlag Berlin Heidelberg 2001 Latt

[复制链接]
楼主: Insularity
发表于 2025-3-23 12:06:09 | 显示全部楼层
Segment LLL-Reduction with Floating Point Orthogonalization,scaled basis can be accurately computed up to dimension 2. by Householder reflexions in floating point arithmetic . with 53 precision bits..We develop a highly practical fpa-variant of the new . . . of Koy and Schnorr [.]. The LLL-steps are guided in this algorithm by the Gram-Schmidt coefficients o
发表于 2025-3-23 17:06:30 | 显示全部楼层
发表于 2025-3-23 20:38:49 | 显示全部楼层
发表于 2025-3-23 23:01:39 | 显示全部楼层
发表于 2025-3-24 02:34:08 | 显示全部楼层
The Shortest Vector Problem in Lattices with Many Cycles,.. We give a proof that the shortest vector problem is NP-complete in the max-norm for .-dimensional lattices . where ℤ./. has . — 1 cycles. We also give experimental data that show that the LLL algorithm does not perform significantly better on lattices with a high number of cycles.
发表于 2025-3-24 08:49:46 | 显示全部楼层
发表于 2025-3-24 13:04:26 | 显示全部楼层
Segment LLL-Reduction of Lattice Bases,htly weaker notion of reducedness, but speeding up the reduction time of lattices of dimension . by a factor .. We also introduce a variant of LLL-reduction using .. The resulting reduction algorithm runs in . . log. . arithmetic steps for integer lattices of dimension . with basis vectors of length 2..
发表于 2025-3-24 16:05:12 | 显示全部楼层
发表于 2025-3-24 20:34:31 | 显示全部楼层
Multisequence Synthesis over an Integral Domain,mputational complexity is . .) multiplications in . where . is the length of each sequence. A necessary and sufficient conditions for the uniqueness of minimal polynomials are given. The set of all minimal polynomials is also described.
发表于 2025-3-24 23:19:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-18 05:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表