找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Coverings of Discrete Quasiperiodic Sets; Theory and Applicati Peter Kramer,Zorka Papadopolos Book 2003 Springer-Verlag Berlin Heidelberg 2

[复制链接]
楼主: 二足动物
发表于 2025-3-23 11:48:49 | 显示全部楼层
发表于 2025-3-23 15:52:42 | 显示全部楼层
发表于 2025-3-23 21:13:44 | 显示全部楼层
发表于 2025-3-24 00:11:13 | 显示全部楼层
Coverings of Discrete Quasiperiodic Sets978-3-540-45805-0Series ISSN 0081-3869 Series E-ISSN 1615-0430
发表于 2025-3-24 05:31:24 | 显示全部楼层
发表于 2025-3-24 09:38:35 | 显示全部楼层
or geometric object. The geometric arrangement then generates a pattern with this motif. In ., one allows the overlap of the geometric objects. Any point is still covered by at least one geometric object. Therefore local motifs attached to geometric objects again generate a pattern.
发表于 2025-3-24 12:53:25 | 显示全部楼层
cupation number of some of the shells. We show that a fixed extended Bergman cluster of 6 shells and 106 atoms covers about 98% of atomic positions. We also prove that a variable extended Bergman cluster of 6 shells, which contains the previous fixed cluster, covers all atomic positions of the theor
发表于 2025-3-24 16:21:54 | 显示全部楼层
sional space, and indeed the decagonal tiling . . can be seen as a subtiling of the icosahedral tiling . . [., .]. The tiles of . . are six golden tetrahedra [., .] of edge lengths ➁ and . ., as above. The tiles are coded in perpendicular space . by corresponding dual Voronoi boundaries projected on
发表于 2025-3-24 21:59:02 | 显示全部楼层
发表于 2025-3-25 00:37:49 | 显示全部楼层
Covering of Discrete Quasiperiodic Sets: Concepts and Theory, or geometric object. The geometric arrangement then generates a pattern with this motif. In ., one allows the overlap of the geometric objects. Any point is still covered by at least one geometric object. Therefore local motifs attached to geometric objects again generate a pattern.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 07:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表