找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Covariant Schrödinger Semigroups on Riemannian Manifolds; Batu Güneysu Book 2017 Springer International Publishing AG 2017 covariant Schrö

[复制链接]
楼主: 柳条筐
发表于 2025-3-26 21:03:08 | 显示全部楼层
,Foundations of Covariant Schrödinger Semigroups,..The following definitions will be very convenient in the sequel:...a) Let . be a smooth metric .-vector bundle. Then a Borel section . is called a . on ., if one has .. Here, . denotes the adjoint of the finite-dimensional linear operator. . with respect to the fixed metric on .
发表于 2025-3-27 03:52:37 | 显示全部楼层
发表于 2025-3-27 07:41:00 | 显示全部楼层
,,,-properties of Covariant Schrödinger Semigroups,In this chapter, . . be an arbitrary covariant Schrödinger bundle..The aim of this chapter is to extend the L.-bounds for e. from Theorem IV.10 to arbitrary covariant Schr¨odinger semigroups, with an explicit quantitative control of the operator norms.
发表于 2025-3-27 13:19:36 | 显示全部楼层
发表于 2025-3-27 14:29:13 | 显示全部楼层
,Essential Self-adjointness of Covariant Schrödinger Operators,In this chapter, . . ..
发表于 2025-3-27 20:46:25 | 显示全部楼层
Smooth Compactly Supported Sections as Form Core,Let . be an arbitrary covariant Schrödinger bundle and assume . to be .-decomposable.
发表于 2025-3-28 00:26:47 | 显示全部楼层
Applications,In this section, . = 3..The Kato–Simon inequality (or, to be precise, its consequence (VII.18) for the corresponding bottoms of spectra) is of fundamental importance in quantum mechanics: As we shall explain in a moment, it provides a mathematically rigorous proof of the following statement..
发表于 2025-3-28 02:05:31 | 显示全部楼层
Covariant Schrödinger Semigroups on Riemannian Manifolds
发表于 2025-3-28 08:36:00 | 显示全部楼层
发表于 2025-3-28 11:57:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 00:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表