找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Counting Surfaces; CRM Aisenstadt Chair Bertrand Eynard Book 2016 Springer International Publishing Switzerland 2016 Algebraic geometry.Com

[复制链接]
楼主: 文化修养
发表于 2025-3-23 11:38:54 | 显示全部楼层
Springer International Publishing Switzerland 2016
发表于 2025-3-23 17:49:44 | 显示全部楼层
Werner Rittberger,Bernward JenschkeIn this chapter we introduce definitions of maps, which are discrete surfaces obtained by gluing polygons along their sides, and we define generating functions to count them. We also derive Tutte’s equations, which are recursive equations satisfied by the generating functions.
发表于 2025-3-23 19:12:56 | 显示全部楼层
In this chapter we introduce the notion of a formal matrix integral, which is very useful for combinatorics, as it turns out to be identical to the generating function of maps of Chap. .
发表于 2025-3-24 00:36:43 | 显示全部楼层
发表于 2025-3-24 05:48:27 | 显示全部楼层
发表于 2025-3-24 10:17:50 | 显示全部楼层
https://doi.org/10.1007/978-3-476-03355-0We have seen, in almost all previous chapters, that symplectic invariants and topological recursion play an important role. They give the solution to Tutte’s recursion equation for maps, they give the formal expansion of various matrix integrals, including Kontsevich integral, and they also give the asymptotics of large maps.
发表于 2025-3-24 10:54:20 | 显示全部楼层
发表于 2025-3-24 18:27:56 | 显示全部楼层
Formal Matrix Integrals,In this chapter we introduce the notion of a formal matrix integral, which is very useful for combinatorics, as it turns out to be identical to the generating function of maps of Chap. .
发表于 2025-3-24 20:22:40 | 显示全部楼层
发表于 2025-3-25 03:09:47 | 显示全部楼层
Counting Riemann Surfaces,In the previous chapter, we have computed the asymptotic generating functions of large maps, and we have seen that they are related to the ( ., .) minimal model.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-23 23:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表