找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Counting Lattice Paths Using Fourier Methods; Shaun Ault,Charles Kicey Book 2019 Springer Nature Switzerland AG 2019 Lattice Path.Discrete

[复制链接]
查看: 29707|回复: 35
发表于 2025-3-21 19:47:45 | 显示全部楼层 |阅读模式
书目名称Counting Lattice Paths Using Fourier Methods
编辑Shaun Ault,Charles Kicey
视频video
概述Introduces a unique technique to count lattice paths by using the discrete Fourier transform.Explores the interconnection between combinatorics and Fourier methods.Motivates students to move from one-
丛书名称Applied and Numerical Harmonic Analysis
图书封面Titlebook: Counting Lattice Paths Using Fourier Methods;  Shaun Ault,Charles Kicey Book 2019 Springer Nature Switzerland AG 2019 Lattice Path.Discrete
描述This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move to higher-dimensional lattice path problems with ease. The technique is carefully developed in the first three chapters using the algebraic properties of the DFT, moving from one-dimensional problems to higher dimensions. In the following chapter, the discussion turns to geometric properties of the DFT in order to study the corridor state space. Each chapter poses open-ended questions and exercises to prompt further practice and future research. Two appendices are also provided, which cover complex variables and non-rectangular lattices, thus ensuring the text will be self-contained and serve as a valued reference..Counting Lattice Paths Using Fourier Methods. is ideal for upper-undergraduates and graduate students studying combinatorics or other areas of mathematics, as well as computer science or physics. Instructors will also find this a valuable resource for use in their seminars. Re
出版日期Book 2019
关键词Lattice Path; Discrete Fourier Transform; Corridor Numbers; Complex Variables; Combinatorics
版次1
doihttps://doi.org/10.1007/978-3-030-26696-7
isbn_softcover978-3-030-26695-0
isbn_ebook978-3-030-26696-7Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Counting Lattice Paths Using Fourier Methods影响因子(影响力)




书目名称Counting Lattice Paths Using Fourier Methods影响因子(影响力)学科排名




书目名称Counting Lattice Paths Using Fourier Methods网络公开度




书目名称Counting Lattice Paths Using Fourier Methods网络公开度学科排名




书目名称Counting Lattice Paths Using Fourier Methods被引频次




书目名称Counting Lattice Paths Using Fourier Methods被引频次学科排名




书目名称Counting Lattice Paths Using Fourier Methods年度引用




书目名称Counting Lattice Paths Using Fourier Methods年度引用学科排名




书目名称Counting Lattice Paths Using Fourier Methods读者反馈




书目名称Counting Lattice Paths Using Fourier Methods读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:02 | 显示全部楼层
发表于 2025-3-22 00:34:54 | 显示全部楼层
发表于 2025-3-22 05:39:51 | 显示全部楼层
Shaun Ault,Charles KiceyIntroduces a unique technique to count lattice paths by using the discrete Fourier transform.Explores the interconnection between combinatorics and Fourier methods.Motivates students to move from one-
发表于 2025-3-22 12:31:53 | 显示全部楼层
发表于 2025-3-22 16:21:41 | 显示全部楼层
https://doi.org/10.1007/978-3-030-26696-7Lattice Path; Discrete Fourier Transform; Corridor Numbers; Complex Variables; Combinatorics
发表于 2025-3-22 21:07:23 | 显示全部楼层
发表于 2025-3-22 21:12:09 | 显示全部楼层
发表于 2025-3-23 05:05:55 | 显示全部楼层
Das Ende der Kunst NeuplatonismusUsing operators and elementary Fourier methods, we analyze walks in one-dimensional bounded and unbounded lattices.
发表于 2025-3-23 06:53:57 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 14:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表