找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Counterexamples in Operator Theory; Mohammed Hichem Mortad Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[复制链接]
楼主: 猛烈抨击
发表于 2025-3-25 05:30:59 | 显示全部楼层
,Glaubwürdigkeit: ein Forschungsüberblick,One of the most powerful tools in the theory of normal operators is the following Fuglede theorem.
发表于 2025-3-25 09:20:08 | 显示全部楼层
发表于 2025-3-25 15:20:45 | 显示全部楼层
Norbert Konegen,Klaus SondergeldClearly, . and . have the same eigenvalues which, in this setting, means that . and . have equal spectra. To see why . and . are not unitarily equivalent, remember that two unitarily equivalent operators are simultaneously (e.g.) self-adjoint. Since . is self-adjoint and . is not, it follows that they cannot be unitarily equivalent.
发表于 2025-3-25 17:36:33 | 显示全部楼层
Norbert Konegen,Klaus SondergeldConsider the operator equation: . where ., ., . ∈ .(.) are given and . ∈ .(.) is the unknown. This equation is more commonly known as the Sylvester equation.
发表于 2025-3-25 20:44:12 | 显示全部楼层
Norbert Konegen,Klaus SondergeldShow that the mapping .↦.. defined from .(.) into .(.) is not weakly continuous, that is, find a sequence (..) in .(.) that converges weakly to . ∈ .(.) yet . does not converge weakly to ...
发表于 2025-3-26 01:23:36 | 显示全部楼层
Some Basic PropertiesThroughout this chapter, . and . denote two Hilbert spaces over . unless otherwise stated.
发表于 2025-3-26 08:16:15 | 显示全部楼层
Basic Classes of Bounded Linear OperatorsLet . be a Hilbert space, and let . ∈ .(.). Let . be the identity operator on ..
发表于 2025-3-26 11:28:53 | 显示全部楼层
Operator TopologiesLet . be a Hilbert space, and let (..) be a sequence in .(.).
发表于 2025-3-26 13:53:21 | 显示全部楼层
发表于 2025-3-26 19:10:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 10:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表