找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Core Data Analysis: Summarization, Correlation, and Visualization; Boris Mirkin Textbook 2019Latest edition Springer Nature Switzerland AG

[复制链接]
查看: 53690|回复: 35
发表于 2025-3-21 17:06:16 | 显示全部楼层 |阅读模式
书目名称Core Data Analysis: Summarization, Correlation, and Visualization
编辑Boris Mirkin
视频videohttp://file.papertrans.cn/239/238235/238235.mp4
概述Focuses on the encoder-decoder interpretation of summarization methods, such as Principal Component Analysis and K-means clustering.Supplies an in-depth description of K-means partitioning including a
丛书名称Undergraduate Topics in Computer Science
图书封面Titlebook: Core Data Analysis: Summarization, Correlation, and Visualization;  Boris Mirkin Textbook 2019Latest edition Springer Nature Switzerland AG
描述.This text examines the goals of data analysis with respect to enhancing knowledge, and identifies data summarization and correlation analysis as the core issues. Data summarization, both quantitative and categorical, is treated within the encoder-decoder paradigm bringing forward a number of mathematically supported insights into the methods and relations between them. Two Chapters describe methods for categorical summarization: partitioning, divisive clustering and separate cluster finding and another explain the methods for quantitative summarization, Principal Component Analysis and PageRank. .Features:.·        An in-depth presentation of K-means partitioning including a corresponding Pythagorean decomposition of the data scatter. .·        Advice regarding such issues as clustering of categorical and mixed scale data, similarity and network data, interpretation aids, anomalous clusters, the number of clusters, etc..·        Thorough attention to data-driven modelling including a number of mathematically stated relations between statistical and geometrical concepts including those between goodness-of-fit criteria for decision trees and data standardization, similarity and cons
出版日期Textbook 2019Latest edition
关键词Clustering; Data Analysis; K-means; Principal component analysis; Visualization; data structures
版次2
doihttps://doi.org/10.1007/978-3-030-00271-8
isbn_softcover978-3-030-00270-1
isbn_ebook978-3-030-00271-8Series ISSN 1863-7310 Series E-ISSN 2197-1781
issn_series 1863-7310
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Core Data Analysis: Summarization, Correlation, and Visualization影响因子(影响力)




书目名称Core Data Analysis: Summarization, Correlation, and Visualization影响因子(影响力)学科排名




书目名称Core Data Analysis: Summarization, Correlation, and Visualization网络公开度




书目名称Core Data Analysis: Summarization, Correlation, and Visualization网络公开度学科排名




书目名称Core Data Analysis: Summarization, Correlation, and Visualization被引频次




书目名称Core Data Analysis: Summarization, Correlation, and Visualization被引频次学科排名




书目名称Core Data Analysis: Summarization, Correlation, and Visualization年度引用




书目名称Core Data Analysis: Summarization, Correlation, and Visualization年度引用学科排名




书目名称Core Data Analysis: Summarization, Correlation, and Visualization读者反馈




书目名称Core Data Analysis: Summarization, Correlation, and Visualization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:25:53 | 显示全部楼层
Sebastian Henn,Sören Koch,Gerhard Wäscherpresenting target categories. Some related concepts such as Bayesian decision rules, bag-of-word model in text analysis, VC-dimension and kernel for non-linear classification are introduced too. The Chapter outlines several important characteristics of summarization and correlation between two featu
发表于 2025-3-22 01:24:03 | 显示全部楼层
发表于 2025-3-22 07:13:27 | 显示全部楼层
Sebastian Henn,Sören Koch,Gerhard Wäscherand clusters. Spectral clustering gained popularity with the so-called Normalized Cut approach to divisive clustering. A relaxation of this combinatorial problem appears to be equivalent to optimizing the Rayleigh quotient for a Laplacian transformation of the similarity matrix under consideration.
发表于 2025-3-22 09:25:40 | 显示全部楼层
发表于 2025-3-22 15:53:50 | 显示全部楼层
发表于 2025-3-22 17:43:01 | 显示全部楼层
Core Partitioning: K-means and Similarity Clustering,d to yield what we call the complementary criterion. This criterion allows to reinterpret the method as that for finding big anomalous clusters. In this formulation, K-means is shown to extend the Principal component analysis criterion to the case at which the scoring factors are supposed to be bina
发表于 2025-3-23 00:29:08 | 显示全部楼层
Divisive and Separate Cluster Structures,and clusters. Spectral clustering gained popularity with the so-called Normalized Cut approach to divisive clustering. A relaxation of this combinatorial problem appears to be equivalent to optimizing the Rayleigh quotient for a Laplacian transformation of the similarity matrix under consideration.
发表于 2025-3-23 02:42:01 | 显示全部楼层
发表于 2025-3-23 08:28:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 04:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表