找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Coping with Complexity: Model Reduction and Data Analysis; Alexander N. Gorban,Dirk Roose Conference proceedings 2011 Springer-Verlag Berl

[复制链接]
查看: 46602|回复: 61
发表于 2025-3-21 20:07:25 | 显示全部楼层 |阅读模式
书目名称Coping with Complexity: Model Reduction and Data Analysis
编辑Alexander N. Gorban,Dirk Roose
视频videohttp://file.papertrans.cn/239/238128/238128.mp4
概述Highly interdisciplinary and helps to circumvent the “language barriers” between different disciplines..Gives the reader an view on the state-of-the-art in both theoretical and practical issues in mod
丛书名称Lecture Notes in Computational Science and Engineering
图书封面Titlebook: Coping with Complexity: Model Reduction and Data Analysis;  Alexander N. Gorban,Dirk Roose Conference proceedings 2011 Springer-Verlag Berl
描述This volume contains the extended version of selected talks given at the international research workshop "Coping with Complexity: Model Reduction and Data Analysis", Ambleside, UK, August 31 – September 4, 2009. The book is deliberately broad in scope and aims at promoting new ideas and methodological perspectives. The topics of the chapters range from theoretical analysis of complex and multiscale mathematical models to applications in e.g., fluid dynamics and chemical kinetics.
出版日期Conference proceedings 2011
关键词asymptotics; dimensionality reduction; invariant manifolds; kinetics; model reduction; singular perturbat
版次1
doihttps://doi.org/10.1007/978-3-642-14941-2
isbn_softcover978-3-642-26561-7
isbn_ebook978-3-642-14941-2Series ISSN 1439-7358 Series E-ISSN 2197-7100
issn_series 1439-7358
copyrightSpringer-Verlag Berlin Heidelberg 2011
The information of publication is updating

书目名称Coping with Complexity: Model Reduction and Data Analysis影响因子(影响力)




书目名称Coping with Complexity: Model Reduction and Data Analysis影响因子(影响力)学科排名




书目名称Coping with Complexity: Model Reduction and Data Analysis网络公开度




书目名称Coping with Complexity: Model Reduction and Data Analysis网络公开度学科排名




书目名称Coping with Complexity: Model Reduction and Data Analysis被引频次




书目名称Coping with Complexity: Model Reduction and Data Analysis被引频次学科排名




书目名称Coping with Complexity: Model Reduction and Data Analysis年度引用




书目名称Coping with Complexity: Model Reduction and Data Analysis年度引用学科排名




书目名称Coping with Complexity: Model Reduction and Data Analysis读者反馈




书目名称Coping with Complexity: Model Reduction and Data Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:29:21 | 显示全部楼层
发表于 2025-3-22 02:28:27 | 显示全部楼层
1439-7358 ad in scope and aims at promoting new ideas and methodological perspectives. The topics of the chapters range from theoretical analysis of complex and multiscale mathematical models to applications in e.g., fluid dynamics and chemical kinetics.978-3-642-26561-7978-3-642-14941-2Series ISSN 1439-7358 Series E-ISSN 2197-7100
发表于 2025-3-22 06:13:13 | 显示全部楼层
Conference proceedings 2011Data Analysis", Ambleside, UK, August 31 – September 4, 2009. The book is deliberately broad in scope and aims at promoting new ideas and methodological perspectives. The topics of the chapters range from theoretical analysis of complex and multiscale mathematical models to applications in e.g., fluid dynamics and chemical kinetics.
发表于 2025-3-22 11:19:53 | 显示全部楼层
https://doi.org/10.1007/978-3-642-14941-2asymptotics; dimensionality reduction; invariant manifolds; kinetics; model reduction; singular perturbat
发表于 2025-3-22 15:59:51 | 显示全部楼层
发表于 2025-3-22 19:36:31 | 显示全部楼层
发表于 2025-3-23 00:30:15 | 显示全部楼层
发表于 2025-3-23 01:54:48 | 显示全部楼层
Coping with Complexity: Model Reduction and Data Analysis978-3-642-14941-2Series ISSN 1439-7358 Series E-ISSN 2197-7100
发表于 2025-3-23 08:52:27 | 显示全部楼层
The Use of Global Sensitivity Methods for the Analysis, Evaluation and Improvement of Complex Model
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-16 07:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表