找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Convexity Methods in Hamiltonian Mechanics; Ivar Ekeland Book 1990 Springer-Verlag Berlin Heidelberg 1990 Area.Convexity.Functionals.Hamil

[复制链接]
查看: 32476|回复: 35
发表于 2025-3-21 19:39:35 | 显示全部楼层 |阅读模式
书目名称Convexity Methods in Hamiltonian Mechanics
编辑Ivar Ekeland
视频video
丛书名称Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
图书封面Titlebook: Convexity Methods in Hamiltonian Mechanics;  Ivar Ekeland Book 1990 Springer-Verlag Berlin Heidelberg 1990 Area.Convexity.Functionals.Hamil
描述In the case of completely integrable systems, periodic solutions are found by inspection. For nonintegrable systems, such as the three-body problem in celestial mechanics, they are found by perturbation theory: there is a small parameter € in the problem, the mass of the perturbing body for instance, and for € = 0 the system becomes completely integrable. One then tries to show that its periodic solutions will subsist for € -# 0 small enough. Poincare also introduced global methods, relying on the topological properties of the flow, and the fact that it preserves the 2-form L~=l dPi 1 dqi‘ The most celebrated result he obtained in this direction is his last geometric theorem, which states that an area-preserving map of the annulus which rotates the inner circle and the outer circle in opposite directions must have two fixed points. And now another ancient theme appear: the least action principle. It states that the periodic solutions of a Hamiltonian system are extremals of a suitable integral over closed curves. In other words, the problem is variational. This fact was known to Fermat, and Maupertuis put it in the Hamiltonian formalism. In spite of its great aesthetic appeal, the
出版日期Book 1990
关键词Area; Convexity; Functionals; Hamiltonian; Potential; eigenvalue; equation; form; hamiltonian system; mechani
版次1
doihttps://doi.org/10.1007/978-3-642-74331-3
isbn_softcover978-3-642-74333-7
isbn_ebook978-3-642-74331-3Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer-Verlag Berlin Heidelberg 1990
The information of publication is updating

书目名称Convexity Methods in Hamiltonian Mechanics影响因子(影响力)




书目名称Convexity Methods in Hamiltonian Mechanics影响因子(影响力)学科排名




书目名称Convexity Methods in Hamiltonian Mechanics网络公开度




书目名称Convexity Methods in Hamiltonian Mechanics网络公开度学科排名




书目名称Convexity Methods in Hamiltonian Mechanics被引频次




书目名称Convexity Methods in Hamiltonian Mechanics被引频次学科排名




书目名称Convexity Methods in Hamiltonian Mechanics年度引用




书目名称Convexity Methods in Hamiltonian Mechanics年度引用学科排名




书目名称Convexity Methods in Hamiltonian Mechanics读者反馈




书目名称Convexity Methods in Hamiltonian Mechanics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:09:16 | 显示全部楼层
发表于 2025-3-22 04:24:52 | 显示全部楼层
978-3-642-74333-7Springer-Verlag Berlin Heidelberg 1990
发表于 2025-3-22 06:51:01 | 显示全部楼层
https://doi.org/10.1007/978-1-349-00207-8Consider a system of . linear equations with continuous . -periodic coefficients: . where . (.) is a real . × . matrix, depending continuously on . ∈ ℝ such that: ..
发表于 2025-3-22 09:01:50 | 显示全部楼层
发表于 2025-3-22 14:07:00 | 显示全部楼层
发表于 2025-3-22 20:57:33 | 显示全部楼层
发表于 2025-3-23 01:02:53 | 显示全部楼层
Manufacturing a Climate of Fear,The fixed-energy problems are the most interesting (and the most difficult) in the theory, because of their geometric significance. Many are still unsolved, and we conclude this chapter by listing the most important ones.
发表于 2025-3-23 03:09:31 | 显示全部楼层
发表于 2025-3-23 06:02:15 | 显示全部楼层
Convex Hamiltonian Systems,We start from a . (., .*, 〈·,·〉), that is, two real vector spaces . and .*, and a bilinear map (.,.*) → 〈.,.*〉 into ℝ which separates points: ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 11:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表