找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Birkhäuser Verlag 1998 Topology.convex integration.differential geom

[复制链接]
查看: 7612|回复: 35
发表于 2025-3-21 17:54:22 | 显示全部楼层 |阅读模式
书目名称Convex Integration Theory
副标题Solutions to the h-p
编辑David Spring
视频video
概述Comprehensive and systematic monograph on convex integration theory.Indispensable to all interested in differential topology, symplectic topology and optimal control theory.Addresses as well as resear
丛书名称Modern Birkhäuser Classics
图书封面Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Birkhäuser Verlag 1998 Topology.convex integration.differential geom
描述§1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equati
出版日期Book 1998
关键词Topology; convex integration; differential geometry; equation; function; geometry; hull extensions; manifol
版次1
doihttps://doi.org/10.1007/978-3-0348-0060-0
isbn_softcover978-3-0348-0059-4
isbn_ebook978-3-0348-0060-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
issn_series 2197-1803
copyrightBirkhäuser Verlag 1998
The information of publication is updating

书目名称Convex Integration Theory影响因子(影响力)




书目名称Convex Integration Theory影响因子(影响力)学科排名




书目名称Convex Integration Theory网络公开度




书目名称Convex Integration Theory网络公开度学科排名




书目名称Convex Integration Theory被引频次




书目名称Convex Integration Theory被引频次学科排名




书目名称Convex Integration Theory年度引用




书目名称Convex Integration Theory年度引用学科排名




书目名称Convex Integration Theory读者反馈




书目名称Convex Integration Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:13:51 | 显示全部楼层
发表于 2025-3-22 04:08:17 | 显示全部楼层
Convex Integration Theory978-3-0348-0060-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
发表于 2025-3-22 06:45:42 | 显示全部楼层
发表于 2025-3-22 08:42:41 | 显示全部楼层
发表于 2025-3-22 16:38:11 | 显示全部楼层
发表于 2025-3-22 18:45:29 | 显示全部楼层
发表于 2025-3-23 00:28:58 | 显示全部楼层
2197-1803 e, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equati978-3-0348-0059-4978-3-0348-0060-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
发表于 2025-3-23 01:26:18 | 显示全部楼层
发表于 2025-3-23 07:41:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 06:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表