找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning; Frédéric Jean Book 2014 The Author(s) 2014 Control theor

[复制链接]
查看: 29300|回复: 35
发表于 2025-3-21 17:31:24 | 显示全部楼层 |阅读模式
书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning
编辑Frédéric Jean
视频video
概述Provides recent results and state-of-the-art in nonholonomic motion planning.Includes the description of a complete algorithm.It is a crash course on first-order theory in sub-Riemannian geometry.Incl
丛书名称SpringerBriefs in Mathematics
图书封面Titlebook: Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning;  Frédéric Jean Book 2014 The Author(s) 2014 Control theor
描述Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.
出版日期Book 2014
关键词Control theory; Motion planning; Nilpotent systems; Nonholonomic systems; Sub-Riemannian geometry
版次1
doihttps://doi.org/10.1007/978-3-319-08690-3
isbn_softcover978-3-319-08689-7
isbn_ebook978-3-319-08690-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2014
The information of publication is updating

书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning影响因子(影响力)




书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning影响因子(影响力)学科排名




书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning网络公开度




书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning网络公开度学科排名




书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning被引频次




书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning被引频次学科排名




书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning年度引用




书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning年度引用学科排名




书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning读者反馈




书目名称Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:29:06 | 显示全部楼层
发表于 2025-3-22 03:11:12 | 显示全部楼层
发表于 2025-3-22 06:07:11 | 显示全部楼层
发表于 2025-3-22 08:55:12 | 显示全部楼层
Vaginose, Vaginitis und Zervizitiswe will see in Sect. . how the concepts introduced in the previous chapter allow to construct such an algorithm. We will also discuss two other methods in Sect. . and give an overview of the literature in Sect. ..
发表于 2025-3-22 16:17:06 | 显示全部楼层
Nonholonomic Motion Planning,we will see in Sect. . how the concepts introduced in the previous chapter allow to construct such an algorithm. We will also discuss two other methods in Sect. . and give an overview of the literature in Sect. ..
发表于 2025-3-22 19:44:00 | 显示全部楼层
发表于 2025-3-23 01:15:57 | 显示全部楼层
Book 2014at are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.
发表于 2025-3-23 05:28:00 | 显示全部楼层
Frédéric JeanProvides recent results and state-of-the-art in nonholonomic motion planning.Includes the description of a complete algorithm.It is a crash course on first-order theory in sub-Riemannian geometry.Incl
发表于 2025-3-23 08:33:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 15:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表