找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Contact Geometry of Slant Submanifolds; Bang-Yen Chen,Mohammad Hasan Shahid,Falleh Al-Sola Book 2022 The Editor(s) (if applicable) and The

[复制链接]
楼主: Denial
发表于 2025-3-23 10:04:12 | 显示全部楼层
发表于 2025-3-23 17:27:48 | 显示全部楼层
Markus Gerber,Jean-Daniel PascheB. Y. Chen’s concept of a slant submanifold can be translated into the context of contact metric geometry in a very natural fashion. In this chapter, we shall discuss the basic facts concerning this variant of the theory.
发表于 2025-3-23 19:26:50 | 显示全部楼层
Dorothea Maria Stock,Philipp ErpfIn this survey paper, we provide an overview of the geometry of slant submanifolds in pointwise Kenmotsu space forms, with a focus on the curvature properties that set basic relationships between the main intrinsic and extrinsic invariants of submanifolds.
发表于 2025-3-23 22:58:12 | 显示全部楼层
发表于 2025-3-24 03:53:17 | 显示全部楼层
Gestaltungskonzepte der UnternehmensführungIn this survey paper, we present a brief summary concerning the slant geometry for submanifolds in metric .-manifolds, together with some applications. The notion of .-structure was introduced by K.
发表于 2025-3-24 08:16:56 | 显示全部楼层
Techniken der UnternehmensführungThe purpose of this chapter is to study the geometry of various kinds of slant submanifolds in almost contact metric 3-structure manifolds.
发表于 2025-3-24 13:10:50 | 显示全部楼层
https://doi.org/10.1007/978-3-658-41053-7Chen-Ricci inequality involving Ricci curvature and the squared mean curvature of different kinds of (slant) submanifolds of a conformal Sasakian space form tangent to the structure vector field of the ambient manifold are presented. Equality cases are also discussed.
发表于 2025-3-24 16:38:52 | 显示全部楼层
发表于 2025-3-24 21:44:13 | 显示全部楼层
发表于 2025-3-25 02:05:38 | 显示全部楼层
,Ökobilanzierung von mineralisiertem Schaum,A differentiable map . between Riemannian manifolds . and . is called a Riemannian submersion if . is onto and it satisfies .for . vector fields tangent to ., where . denotes the derivative map.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 09:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表