找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Constructive Methods of Wiener-Hopf Factorization; I. Gohberg,M. A. Kaashoek Book 1986 Birkhäuser Verlag Basel 1986 Eigenvalue.matrices.ma

[复制链接]
楼主: 漏出
发表于 2025-3-23 12:01:17 | 显示全部楼层
发表于 2025-3-23 17:34:08 | 显示全部楼层
发表于 2025-3-23 18:45:27 | 显示全部楼层
发表于 2025-3-23 22:52:05 | 显示全部楼层
Ultrasonography in Vascular DiagnosisThe explicit method of factorization and inversion developed in [BGK1], [BGK5] and [BGK6] is extended to a larger class of Wiener-Hopf integral equations, namely those with mxm matrix symbols of the form ., where k is the Fourier tranform of a function k from the class .
发表于 2025-3-24 03:13:10 | 显示全部楼层
Ambient Intelligence in Working EnvironmentsTo explain the background of this part of the book consider . where k is an m × m matrix-valued function of which the entries are in L.(-∞, ∞) and I stands for the m × m identity matrix.
发表于 2025-3-24 08:10:24 | 显示全部楼层
发表于 2025-3-24 10:56:00 | 显示全部楼层
Towards Intelligent Interaction in ClassroomNecessary conditions for Wiener-Hopf equivalence are established in terms of the incoming and outgoing subspaces associated with realizations of the given analytic operator functions. Other results about the behaviour of the incoming and outgoing subspaces under certain elementary operations are also included.
发表于 2025-3-24 17:18:21 | 显示全部楼层
发表于 2025-3-24 20:53:20 | 显示全部楼层
The Å Publish/Subscribe FrameworkExplicit formulas for a symmetric Wiener-Hopf factorization of a selfadjoint rational matrix function are constructed. The formulas are given in terms of realizations that are selfadjoint with respect to a certain indefinite inner product. The construction of the formulas is based on the method of Wiener-Hopf factorization developed in [2].
发表于 2025-3-24 23:21:39 | 显示全部楼层
Wiener-Hopf Equations with Symbols Analytic in A StripThe explicit method of factorization and inversion developed in [BGK1], [BGK5] and [BGK6] is extended to a larger class of Wiener-Hopf integral equations, namely those with mxm matrix symbols of the form ., where k is the Fourier tranform of a function k from the class .
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 23:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表