找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Constraint-Handling in Evolutionary Optimization; Efrén Mezura-Montes Book 2009 Springer-Verlag Berlin Heidelberg 2009 Computational Intel

[复制链接]
发表于 2025-3-23 11:05:25 | 显示全部楼层
发表于 2025-3-23 16:01:52 | 显示全部楼层
发表于 2025-3-23 19:15:16 | 显示全部楼层
https://doi.org/10.1007/978-3-319-32083-0applying the modification only in the particle best population.We show through a number of experiments how, by keeping the selection pressure on a decreasing fraction of the population, COPSO can consistently solve a benchmark of constrained optimization problems.
发表于 2025-3-24 02:09:04 | 显示全部楼层
Continuous Constrained Optimization with Dynamic Tolerance Using the COPSO Algorithm,applying the modification only in the particle best population.We show through a number of experiments how, by keeping the selection pressure on a decreasing fraction of the population, COPSO can consistently solve a benchmark of constrained optimization problems.
发表于 2025-3-24 04:47:17 | 显示全部楼层
1860-949X rithms in constrained search spaces and the adaptation of novel nature-inspired algorithms for numerical optimization with constraints. .."Constraint-Handling in Evolutionary Optimization" is an important reference for researchers, practitioners and students in978-3-642-10155-7978-3-642-00619-7Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-24 07:14:52 | 显示全部楼层
发表于 2025-3-24 13:14:05 | 显示全部楼层
发表于 2025-3-24 16:14:56 | 显示全部楼层
An Adaptive Penalty Function for Handling Constraint in Multi-objective Evolutionary Optimization, solutions. The proposed method is simple to implement and does not need any parameter tuning. The constraint handling technique is tested on several constrained multi-objective optimization problems and has shown superior results compared to some chosen state-of-the-art designs.
发表于 2025-3-24 21:24:20 | 显示全部楼层
Infeasibility Driven Evolutionary Algorithm for Constrained Optimization,the population allows the algorithm to approach the constraint boundary from the infeasible side of the search space in addition to its approach from the feasible side of the search space via evolution of feasible solutions. Furthermore, “good” infeasible solutions are ranked higher than the feasibl
发表于 2025-3-25 00:12:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 00:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表