找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Connectomics in NeuroImaging; First International Guorong Wu,Paul Laurienti,Brent C. Munsell Conference proceedings 2017 Springer Internat

[复制链接]
查看: 26171|回复: 63
发表于 2025-3-21 16:51:25 | 显示全部楼层 |阅读模式
书目名称Connectomics in NeuroImaging
副标题First International
编辑Guorong Wu,Paul Laurienti,Brent C. Munsell
视频videohttp://file.papertrans.cn/236/235641/235641.mp4
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Connectomics in NeuroImaging; First International  Guorong Wu,Paul Laurienti,Brent C. Munsell Conference proceedings 2017 Springer Internat
描述.This book constitutes the refereed proceedings of the First International Workshop on Connectomics in NeuroImaging, CNI 2017, held in conjunction with MICCAI 2017 in Quebec City, Canada, in September 2017...The 19 full papers presented were carefully reviewed and selected from 26 submissions. The papers deal with new advancements in network construction, analysis, and visualization techniques in connectomics and their use in clinical diagnosis and group comparison studies as well as in various neuroimaging applications..
出版日期Conference proceedings 2017
关键词architecture; artificial intelligence; classification; classification accuracy; classifiers; cluster anal
版次1
doihttps://doi.org/10.1007/978-3-319-67159-8
isbn_softcover978-3-319-67158-1
isbn_ebook978-3-319-67159-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Connectomics in NeuroImaging影响因子(影响力)




书目名称Connectomics in NeuroImaging影响因子(影响力)学科排名




书目名称Connectomics in NeuroImaging网络公开度




书目名称Connectomics in NeuroImaging网络公开度学科排名




书目名称Connectomics in NeuroImaging被引频次




书目名称Connectomics in NeuroImaging被引频次学科排名




书目名称Connectomics in NeuroImaging年度引用




书目名称Connectomics in NeuroImaging年度引用学科排名




书目名称Connectomics in NeuroImaging读者反馈




书目名称Connectomics in NeuroImaging读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:38:40 | 显示全部楼层
The uniform output regulation problem,ising tool for imaging-based brain disease diagnosis. Conventional low-order FC network (LON) usually characterizes pairwise temporal correlation of rs-fMRI signals between any pair of brain regions. Meanwhile, high-order FC network (HON) has provided an alternative brain network modeling strategy,
发表于 2025-3-22 02:45:21 | 显示全部楼层
发表于 2025-3-22 07:36:19 | 显示全部楼层
发表于 2025-3-22 12:40:09 | 显示全部楼层
https://doi.org/10.1007/0-8176-4465-2 them using graph theory. As a result, it can be non-intuitive to grasp the contribution of each edge within a graph, both at a local and global scale. Here, we introduce a new platform that enables tractography-based networks to be explored in a highly interactive real-time fashion. The framework a
发表于 2025-3-22 15:11:55 | 显示全部楼层
https://doi.org/10.1007/0-8176-4465-2vity (functional MRI). However, how early dementia affects the morphology of the cortical surface remains poorly understood. In this paper, we first introduce . architecture which stacks multiple networks, each quantifying a cortical attribute (e.g., thickness). Second, to model the relationship bet
发表于 2025-3-22 18:35:21 | 显示全部楼层
发表于 2025-3-22 23:43:56 | 显示全部楼层
发表于 2025-3-23 04:27:31 | 显示全部楼层
发表于 2025-3-23 07:12:52 | 显示全部楼层
Alexey Pavlov,Nathan Wouw,Henk Nijmeijericine. Recently, machine learning techniques typically use .-.-. or .-. connectivity features to understand how the brain is organized, and then use this information to predict the clinical outcome. Unfortunately, computational models that are trained with these types of features are very localized
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-11-15 08:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表