找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing; Stefan Wermter,Ellen Riloff,Gabriele Schel

[复制链接]
楼主: FETID
发表于 2025-3-26 22:29:24 | 显示全部楼层
发表于 2025-3-27 02:04:54 | 显示全部楼层
发表于 2025-3-27 08:52:44 | 显示全部楼层
0302-9743 the state of the art in the most promising current approaches to learning for NLP and is thus compulsory reading for researchers in the field or for anyone applying the new techniques to challenging real-world NLP problems.978-3-540-60925-4978-3-540-49738-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-27 10:51:50 | 显示全部楼层
发表于 2025-3-27 15:51:30 | 显示全部楼层
发表于 2025-3-27 18:23:52 | 显示全部楼层
Turbulent Shear Layers in Supersonic Flowl class. This method does not depend on any specific grammar or set of semantical categories, so it can be used on (almost) any existing system. We present experimental results that show our method gives a considerable improvement over regular stochastic grammars.
发表于 2025-3-27 23:09:22 | 显示全部楼层
https://doi.org/10.1007/3-540-33591-9he accuracy of the statistical method remains 10% below the performance of human experts. This suggests a limit on what can be learned automatically from text, and points to the need to combine machine learning with human expertise.
发表于 2025-3-28 04:15:36 | 显示全部楼层
Lecture Notes in Computer Sciencel natural language processing. We report experimental results of applying a specific type of committee-based selection during training of a stochastic part-of-speech tagger, and demonstrate substantially improved learning rates over complete training using all of the text.
发表于 2025-3-28 10:12:19 | 显示全部楼层
Separating learning and representation,ed the potential to correctly recognise embeddings of any length. These findings illustrate the benefits of the study of representation, which can provide a basis for the development of novel learning rules.
发表于 2025-3-28 14:18:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 13:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表