找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Connectionist Speech Recognition; A Hybrid Approach Hervé A. Bourlard,Nelson Morgan Book 1994 Springer Science+Business Media New York 1994

[复制链接]
楼主: ACORN
发表于 2025-3-23 10:31:41 | 显示全部楼层
Experimental Systemsvanced Technologies (Denver, CO), and more recently with Michael Cohen, Horacio Franco, and Victor Abrash of SRI (Stanford, CA). The results of this continuing work are presented here to show that the hybrid HMM/MLP approach can improve state-of-the-art large vocabulary, continuous speech recognition systems.
发表于 2025-3-23 17:14:23 | 显示全部楼层
Context-Dependent MLPs, current state-of-the-art continuous speech recognizers require HMMs with greater complexity, e.g., multiple densities per phone and/or context-dependent phone models. Will the consistent improvement we have seen in these tests be washed out in systems with more detailed models?
发表于 2025-3-23 20:30:08 | 显示全部楼层
HMM/MLP and Predictive Modelsability that a particular acoustic vector is emitted at a given time only depends on the current state and the current acoustic vector. As a consequence, this model does not take account of the dynamic nature of the speech signal..
发表于 2025-3-23 23:43:57 | 显示全部楼层
发表于 2025-3-24 03:58:44 | 显示全部楼层
Statistical Thermodynamics of Turbulence,ckson, 1990; Hertz, Krogh, & Palmer, 1991; Zu-rada, 1992]. For more information on learning algorithms, performance evaluation, and applications, see [Karayiannis & Venetsanopoulos, 1993]. For more references and application areas, see [Simpson, 1991].
发表于 2025-3-24 08:30:11 | 显示全部楼层
发表于 2025-3-24 12:11:03 | 显示全部楼层
发表于 2025-3-24 16:16:44 | 显示全部楼层
0893-3405 ches into state of the art continuous speechrecognition systems based on hidden Markov models (HMMs) to improvetheir performance. In this framework, neural networks (and inparticular, multilayer perceptrons or MLPs) have been restricted towell-defined subtasks of the whole system, i.e. HMM emissionp
发表于 2025-3-24 20:39:33 | 显示全部楼层
发表于 2025-3-24 23:34:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 03:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表