找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Conjugate Gradient Algorithms and Finite Element Methods; Michal Křížek,Pekka Neittaanmäki,Roland Glowinski Book 2004 Springer-Verlag Berl

[复制链接]
楼主: Heel-Spur
发表于 2025-3-23 13:13:53 | 显示全部楼层
发表于 2025-3-23 17:31:48 | 显示全部楼层
发表于 2025-3-23 18:56:54 | 显示全部楼层
Inversion of Block-Tridiagonal Matrices and Nonnegativity Preservation in the Numerical Solution of in the componentwise sense. We solve the above problem by suitably chosen numerical method. Since . denotes the concentration, which is always nonnegative, it is natural to require the nonnegativity from the numerical approximations of . as well.
发表于 2025-3-23 23:28:33 | 显示全部楼层
发表于 2025-3-24 02:34:48 | 显示全部楼层
Geometric Interpretations of Conjugate Gradient and Related Methods.,...{b}.). ∈ ℝ. is a given right-hand side. This method can be considered as direct as well as iterative. It is similar to the Lanczos method for finding eigenvalues presented in [.] (which is mentioned in [14, p. 410]).
发表于 2025-3-24 06:55:18 | 显示全部楼层
The Convergence of Krylov Methods and Ritz Valuesction with the Lanczos method for approximation of eigenvalues of .. A disadvantage is that the actual . for both the conjugate gradients and the Lanczos method do not follow too easily and require clever combination of several ingredients.
发表于 2025-3-24 11:59:24 | 显示全部楼层
On the Nonnegativity Conservation in Semidiscrete Parabolic Problemsd comparison principles are fundamental properties of partial differential equations of second order. There are different formulations of these principles. They hold for a variety of linear and nonlinear problems, see e.g., [.], [.], [.], [.], [.], [.], [.], [.].
发表于 2025-3-24 17:24:58 | 显示全部楼层
Subcritical Solitons I: Saturable Absorber,nd suggest error indicators/estimators that are further used in various mesh adaptive procedures (see, e.g., [.]). Global error estimates give a general presentation on the quality of an approximate solution and a stopping criteria.
发表于 2025-3-24 20:51:52 | 显示全部楼层
发表于 2025-3-25 02:22:14 | 显示全部楼层
Michal Křížek,Pekka Neittaanmäki,Roland GlowinskiIncludes supplementary material:
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-7 20:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表