找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Conjugate Duality and the Exponential Fourier Spectrum; Wray Britton Book 1983 Springer-Verlag New York Inc. 1983 Duality.Dualität (Math.)

[复制链接]
楼主: ODE
发表于 2025-3-25 07:24:52 | 显示全部楼层
发表于 2025-3-25 10:53:25 | 显示全部楼层
Selecting the objective functional: conjugate duality,Observe that for . n there are an infinity of spectral densities in which in particular satisfy (2.7). In order to select a unique function from Ω. we need a criterion. Putting aside certain philosophical issue (Jaynes, 1979), consider the negentropy functional:.H:Ω. → R, where:..
发表于 2025-3-25 13:11:11 | 显示全部楼层
发表于 2025-3-25 18:39:14 | 显示全部楼层
Solving for ,By Theorem 3.16, . is determined by the following relation:.,.where Z. (θ .) = 2π(c*c). and:
发表于 2025-3-25 21:09:15 | 显示全部楼层
Obtaining an initial estimate , of ,Consider the . ., where:...and . consists of n+1 Lagrange multipliers.
发表于 2025-3-26 03:58:32 | 显示全部楼层
Numerical asymptotics,I begin with some classical motivational results:. (F. and M. Riesz; cf. Koosis, 1980, pp. 40–47/100–102) Let F be a spectral distribution which is of bounded variation on T.. Let r. denote the k. trigonometric moment of the measure dF, i.e.,...If ., then F is absolutely continuous.
发表于 2025-3-26 04:48:56 | 显示全部楼层
发表于 2025-3-26 09:27:21 | 显示全部楼层
Conclusion,From the numerical experiment, we see that it is feasible to reconstruct a sufficiently smooth spectral density on the basis of the minimum negentropy criterion. We achieve a robust spectral density estimator in f. at the expense of increased computational complexity and the possible degradation of the statistical asymptotic properties of ..
发表于 2025-3-26 15:58:22 | 显示全部楼层
发表于 2025-3-26 18:42:29 | 显示全部楼层
Transportrecht - Schnell erfasstrical work, we must employ the functional . and {c., 0 ≤ k ≤ N.} is determined by recursive relation (3.16.3)-(3.16.4) for some judicious truncation point N. ≤ ∞. Recall that {r.,1 ≤ k ≤ n} is given for n ≤ N.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 03:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表