找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Conjectures in Arithmetic Algebraic Geometry; A Survey Wilfred W. J. Hulsbergen Book 1992 Springer Fachmedien Wiesbaden 1992 Algebra.Arithm

[复制链接]
楼主: iniquity
发表于 2025-3-26 23:49:26 | 显示全部楼层
The Explanation of Network Form,rsection index on arithmetic varieties on Spec(.), thus enlarging Arakelov’s construction of the Néron-Tate height pairing. This generalized height pairing was constructed by Beilinson and, independently, by Gillet and Soulé.
发表于 2025-3-27 02:51:29 | 显示全部楼层
,Arithmetic intersections and Beilinson’s third conjecture,rsection index on arithmetic varieties on Spec(.), thus enlarging Arakelov’s construction of the Néron-Tate height pairing. This generalized height pairing was constructed by Beilinson and, independently, by Gillet and Soulé.
发表于 2025-3-27 05:29:54 | 显示全部楼层
Transport decisions in an age of uncertaintyw they give rise to some of the most intricate conjectures, the Birch & Swinnerton-Dyer Conjectures, which can be interpreted as the one-dimensional counterpart of Dedekind’s Class Number Formula. Also, more recently, a remarkable relation was found between elliptic curves and Fermat’s Last Theorem.
发表于 2025-3-27 10:37:30 | 显示全部楼层
发表于 2025-3-27 16:20:39 | 显示全部楼层
发表于 2025-3-27 21:03:03 | 显示全部楼层
Examples and Results,occurs: only part of motivic cohomology is useful. This phenomenon was already encountered in the discussion of Ramakrishnan’s result on the regulator map for Hilbert modular surfaces. In the last section a class of varieties is introduced for which the Hodge and Tate Conjectures are true. This result is due to U. Jannsen.
发表于 2025-3-28 00:19:19 | 显示全部楼层
The zero-dimensional case: number fields, Number Formula, one of the highlights of nineteenth century number theory. This formula contains, among other things, an important entity, the regulator. This regulator and its generalizations will play a fundamental role in some of the most intriguing conjectures on L-functions of recent times. Th
发表于 2025-3-28 05:25:27 | 显示全部楼层
发表于 2025-3-28 09:00:02 | 显示全部楼层
发表于 2025-3-28 14:12:19 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 11:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表