找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Conformal Groups and Related Symmetries Physical Results and Mathematical Background; Proceedings of a Sym A. O. Barut,H. -D. Doebner Confe

[复制链接]
楼主: KEN
发表于 2025-3-25 05:26:44 | 显示全部楼层
Transitional Justice in Practiceeted as a homogeneous space of SU(2). An expanding model of the universe is locally approximated by de Sitter spaces. Irreducible representations of the de Sitter group are explicitly constructed in ur theory. From these, Poincaré group representations in Minkowski space with well-defined rest mass
发表于 2025-3-25 10:26:45 | 显示全部楼层
https://doi.org/10.1007/978-1-4419-6099-3nformal compactification M of the Minkowski space time. They are interachanged by the space and space-time inversions. It is suggested that Dirac spinor fields should be coupled to a gauge potential in order to get a nontrivial unitary representation of the conformal group in the space of solutions
发表于 2025-3-25 15:43:57 | 显示全部楼层
发表于 2025-3-25 16:33:45 | 显示全部楼层
发表于 2025-3-25 23:23:28 | 显示全部楼层
From Heisenberg algebra to conformal dynamical group,The basic algebraic structures in the quantum theory of the electron, from Heisenberg algebra, kinematic algebra, Galilean, and Poincaré groups, to the internal and external conformal algebras are outlined. The universal role of the conformal dynamical group from electron, H-atom, hadrons, to periodic table is discussed.
发表于 2025-3-26 04:03:35 | 显示全部楼层
Path integral realization of a dynamical group,A way to realize a dynamical group in terms of a path integral is illustrated by using the Poschl-Teller oscillator.
发表于 2025-3-26 04:39:51 | 显示全部楼层
https://doi.org/10.1007/3-540-17163-0conformal field theory; path integral; quantum field; quantum field theory; supergravity
发表于 2025-3-26 11:04:13 | 显示全部楼层
发表于 2025-3-26 13:31:59 | 显示全部楼层
Conformal Groups and Related Symmetries Physical Results and Mathematical Background978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
发表于 2025-3-26 17:30:39 | 显示全部楼层
0075-8450 Overview: 978-3-662-14482-4978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 01:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表