找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Concise Guide to Quantum Machine Learning; Davide Pastorello Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive li

[复制链接]
查看: 7599|回复: 43
发表于 2025-3-21 18:25:48 | 显示全部楼层 |阅读模式
书目名称Concise Guide to Quantum Machine Learning
编辑Davide Pastorello
视频videohttp://file.papertrans.cn/236/235112/235112.mp4
概述Offers a brief but effective introduction to quantum machine learning.Reviews those quantum algorithms most relevant to machine learning.Does not require a background in quantum computing or machine l
丛书名称Machine Learning: Foundations, Methodologies, and Applications
图书封面Titlebook: Concise Guide to Quantum Machine Learning;  Davide Pastorello Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive li
描述.This book offers a brief but effective introduction to quantum machine learning (QML). QML is not merely a translation of classical machine learning techniques into the language of quantum computing, but rather a new approach to data representation and processing. Accordingly, the content is not divided into a “classical part” that describes standard machine learning schemes and a “quantum part” that addresses their quantum counterparts. Instead, to immerse the reader in the quantum realm from the outset, the book starts from fundamental notions of quantum mechanics and quantum computing. Avoiding unnecessary details, it presents the concepts and mathematical tools that are essential for the required quantum formalism. In turn, it reviews those quantum algorithms most relevant to machine learning. Later chapters highlight the latest advances in this field and discuss the most promising directions for future research...To gain the most from this book, a basic grasp of statistics and linear algebra is sufficient; no previous experience with quantum computing or machine learning is needed. The book is aimed at researchers and students with no background in quantum physics and is also
出版日期Book 2023
关键词Quantum Computing; Quantum Neural Networks; Quantum Annealing; Machine Leaning; Quantum Algorithms
版次1
doihttps://doi.org/10.1007/978-981-19-6897-6
isbn_softcover978-981-19-6899-0
isbn_ebook978-981-19-6897-6Series ISSN 2730-9908 Series E-ISSN 2730-9916
issn_series 2730-9908
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Concise Guide to Quantum Machine Learning影响因子(影响力)




书目名称Concise Guide to Quantum Machine Learning影响因子(影响力)学科排名




书目名称Concise Guide to Quantum Machine Learning网络公开度




书目名称Concise Guide to Quantum Machine Learning网络公开度学科排名




书目名称Concise Guide to Quantum Machine Learning被引频次




书目名称Concise Guide to Quantum Machine Learning被引频次学科排名




书目名称Concise Guide to Quantum Machine Learning年度引用




书目名称Concise Guide to Quantum Machine Learning年度引用学科排名




书目名称Concise Guide to Quantum Machine Learning读者反馈




书目名称Concise Guide to Quantum Machine Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:53:05 | 显示全部楼层
发表于 2025-3-22 04:00:06 | 显示全部楼层
Quantum Pattern Recognition,In this chapter we introduce the quantum implementation of an associative memory based on a modification of the Grover algorithm. Then we review the application of the quantum Fourier transform to pattern recognistion and an adiabatic algorithm to retrieve binary patterns from a quantum memory.
发表于 2025-3-22 07:07:20 | 显示全部楼层
发表于 2025-3-22 11:29:24 | 显示全部楼层
发表于 2025-3-22 16:26:18 | 显示全部楼层
Giuseppe Spolaore,Pierdaniele Giarettas. It is the most prominent application of quantum information theory and delivers algorithms to solve efficiently some problems which are hard for classical computers. This chapter is focused on the fundamentals of quantum computing like the abstract notion of a universal quantum computer and the c
发表于 2025-3-22 20:22:19 | 显示全部楼层
Giuseppe Spolaore,Pierdaniele Giarettag schemes. In particular, the quantum Fourier transform is a quantum implementation of the discrete Fourier transform [Co94], Grover’s algorithm and amplitude amplification are quantum search algorithms in an unsorted database [Gr96, BH97], the phase estimation algorithm allows to estimate the eigen
发表于 2025-3-22 23:26:31 | 显示全部楼层
发表于 2025-3-23 04:38:10 | 显示全部楼层
发表于 2025-3-23 09:16:26 | 显示全部楼层
https://doi.org/10.1007/978-3-030-82700-7labelled (classified) data. In this section we introduce some quantum algorithms to make predictions on labels of previously unseen data instances: two examples of quantum distance based classifiers, a quantum versions of the k-nearest neighbors algorithm, and the quantum support vector machine. Mor
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-14 01:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表