找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Conceptual Modeling; 31st International C Paolo Atzeni,David Cheung,Sudha Ram Conference proceedings 2012 Springer-Verlag Berlin Heidelberg

[复制链接]
楼主: 债权人
发表于 2025-3-27 00:17:02 | 显示全部楼层
发表于 2025-3-27 04:07:11 | 显示全部楼层
Conference proceedings 2012siness intelligence; extraction, discovery and clustering; search and documents; data and process modeling; ontology based approaches; variability and evolution; adaptation, preferences and query refinement; queries, matching and topic search; and conceptual modeling in action.
发表于 2025-3-27 07:58:17 | 显示全部楼层
发表于 2025-3-27 11:27:08 | 显示全部楼层
发表于 2025-3-27 14:40:22 | 显示全部楼层
发表于 2025-3-27 21:45:03 | 显示全部楼层
Richard S. Aquino,Brooke A. Portertterns within a given application domain that can be mapped repeatedly, as appropriate, to local structures. We formally define canonical and domain structures, mappings to local structures, and functionality. We have implemented several, generic semantic widgets using our approach in an operational educational web repository.
发表于 2025-3-27 23:07:30 | 显示全部楼层
发表于 2025-3-28 04:01:54 | 显示全部楼层
Using Domain Ontologies as Semantic Dimensions in Data Warehousesxtends OLAP (OnLine Analytical Processing) by integrating concept expressions and proper level definitions over domain ontologies into OLAP operations. A prototype demonstrates the feasibility of the approach.
发表于 2025-3-28 06:15:55 | 显示全部楼层
Sliced Column-Store (SCS): Ontological Foundations and Practical Implicationss for column-store databases based on representational adequacy. Second, we use these ontological foundations as the basis to propose an extended model of the column-store model called Sliced Column Store (SCS), and show that this model outperforms column-store models for read-oriented queries.
发表于 2025-3-28 14:18:02 | 显示全部楼层
Fast Group Recommendations by Applying User Clustering base, but we pre-partition users into clusters of similar ones and use the cluster members for recommendations. We efficiently aggregate the single user recommendations into group recommendations by leveraging the power of a top-. algorithm. We evaluate our approach in a real dataset of movie ratings.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 13:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表