找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Concepts & Images; Visual Mathematics Arthur L. Loeb Book 1993 Springer Science+Business Media New York 1993 design.mathematics.synergetics

[复制链接]
楼主: 味觉没有
发表于 2025-3-30 11:35:03 | 显示全部楼层
Points and Regions,In this chapter we summarize the various arrays of discrete points and the various tessellating polygons which we have encountered in the preceding chapters, and introduce some others. Notably, there is a one-to-one correspondence between some of the discrete points and the polygons.
发表于 2025-3-30 13:56:14 | 显示全部楼层
A Look at Infinity,Four bugs are located at the four corners of a square. Each looks at a bug nearest to it in a clockwise direction. Each moves toward that neighbor, all four bugs moving at the same speed at any given moment, although that speed does not necessarily remain constant in time.
发表于 2025-3-30 17:09:47 | 显示全部楼层
An Irrational Number,The bugs studied in the previous chapter generated a curve which makes a constant angle, namely 45° with the direction toward the origin (the radial direction). We could have used six bugs at the corners of a regular hexagon, in which case they would have travelled at 60° to the radial direction.
发表于 2025-3-30 23:33:01 | 显示全部楼层
The Notation of Calculus,In Chapters XIII and XIV we dealt with issues of discrete and continuous structures, rational and irrational numbers, and recognized the relationships between them. These are actually the fundamental concerns of calculus; if they are understood, then the remainder of calculus is essentially a question of notation.
发表于 2025-3-31 04:19:55 | 显示全部楼层
Tessellations and Symmetry,t overlap or spaces in between is said to be ., a term derived from the Greek word ., or tessera, a tile. Principally, we shall concern ourselves here with the problem of covering a plane with mutually identical tiles; in Chapter XX we shall deal with a particular . of tiles.
发表于 2025-3-31 05:15:31 | 显示全部楼层
A Diophantine Equation and its Solutions, Diophantes of Alexandria, who is presumed to have discovered them. In general, all variables in such an equation are to be rational; in our case they are integers. Although in general one cannot solve a single equation in three variables, the restriction that the variables be integers limits us to a finite number of solutions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 14:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表