找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Concentration Analysis and Applications to PDE; ICTS Workshop, Banga Adimurthi,K. Sandeep,Cyril Tintarev Conference proceedings 2013 Spring

[复制链接]
楼主: fundoplication
发表于 2025-3-23 11:33:42 | 显示全部楼层
Towards a New Shell Model FormalismWe review results concerning optimal Sobolev inequalities in Riemannian manifolds and recent existence/non existence/uniqueness results for Sobolev extremals in the hyperbolic space .. We alsodi scuss exponential integrability in ., the hyperbolic plane, and related topics.
发表于 2025-3-23 16:25:37 | 显示全部楼层
The Statesman‘s Yearbook 1998-99We prove a general finite-dimensional reduction theorem for critical equations of scalar curvature type. Solutions of these equations are constructed as a sum of peaks. The use of this theorem reduces the proof of existence of multi-peak solutions to some test-functions estimates and to the analysis of the interactions of peaks.
发表于 2025-3-23 18:43:57 | 显示全部楼层
发表于 2025-3-23 23:26:02 | 显示全部楼层
Blow-up Solutions for Linear Perturbations of the Yamabe Equation,For a smooth, compact Riemannian manifold (M,g) of dimension . we are interested in the critical equation . where . is the Laplace–Beltrami operator, S. is the scalar curvature of . and ε is a small parameter.
发表于 2025-3-24 02:33:50 | 显示全部楼层
发表于 2025-3-24 10:11:27 | 显示全部楼层
发表于 2025-3-24 12:17:02 | 显示全部楼层
,The Ljapunov–Schmidt Reduction for Some Critical Problems,r and ..In particular, we prove existence and multiplicity of positive and sign changing solutions which blow-up or blow-down at one or more points of the domain as the parameter є goes to zero. The main tool is the Ljapunov–Schmidt reduction method.
发表于 2025-3-24 16:42:00 | 显示全部楼层
,A Note on Non-radial Sign-changing Solutions for the Schrödinger–Poisson Problem in the Semiclassicassical limit. Indeed we construct non-radial multi-peak solutions with an arbitrary large number of positive and negative peaks which are displaced in suitable symmetric configurations and which collapse to the same point as ϵ ⟶ 0. The proof is based on the Lyapunov–Schmidt reduction.
发表于 2025-3-24 21:51:40 | 显示全部楼层
发表于 2025-3-25 00:20:38 | 显示全部楼层
Trends in Mathematicshttp://image.papertrans.cn/c/image/234851.jpg
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 07:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表