找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2022 Workshops; Tel Aviv, Israel, Oc Leonid Karlinsky,Tomer Michaeli,Ko Nishino Conference proceedings 2023 The Edit

[复制链接]
楼主: INFER
发表于 2025-3-25 04:07:30 | 显示全部楼层
https://doi.org/10.1007/978-981-99-6335-5nder different light conditions. This can be later used to reveal surface details and interactively relight the subject. Such process, however, typically requires dedicated hardware setups to recover the light direction from multiple locations, making the process tedious when performed outside the l
发表于 2025-3-25 07:40:49 | 显示全部楼层
发表于 2025-3-25 15:28:35 | 显示全部楼层
The Effects of Noise on Aquatic Life our method. Owing to global optimisation, our algorithm is much more capable at recovering the true divergence, compared to other heuristic divergence estimators or event-based optic flow methods. With GPU acceleration, our method also achieves competitive runtimes.
发表于 2025-3-25 18:36:03 | 显示全部楼层
Arthur N. Popper,Anthony D. Hawkinsdata augmentation. By preparing models at the training stage for the appropriate feature space, the need for additional computational resources on-board for e.g. image scaling or band-alignment of camera data can be mitigated.
发表于 2025-3-25 21:11:23 | 显示全部楼层
发表于 2025-3-26 00:16:17 | 显示全部楼层
发表于 2025-3-26 04:33:51 | 显示全部楼层
发表于 2025-3-26 10:48:53 | 显示全部楼层
发表于 2025-3-26 15:57:10 | 显示全部楼层
Spacecraft Pose Estimation Based on Unsupervised Domain Adaptation and on a 3D-Guided Loss Combinatiomain adaptation with robust pseudo-labelling. Our solution has ranked second in the two categories of the 2021 Pose Estimation Challenge organised by the European Space Agency and the Stanford University, achieving the lowest average error over the two categories (Code is available at: .).
发表于 2025-3-26 18:20:12 | 显示全部楼层
Monocular 6-DoF Pose Estimation for Non-cooperative Spacecrafts Using Riemannian Regression Networkon and limits the error to a desirable range. Moreover, several data augmentation techniques were proposed to address the overfitting issue caused by the small scale of the spacecraft dataset in this paper. In the SPARK2022 challenge, our method achieves state-of-the-art pose estimation accuracy.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 21:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表