找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[复制链接]
查看: 47325|回复: 61
发表于 2025-3-21 17:25:06 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2022
副标题17th European Confer
编辑Shai Avidan,Gabriel Brostow,Tal Hassner
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app
描述.The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022.. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation..
出版日期Conference proceedings 2022
关键词Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/978-3-031-20065-6
isbn_softcover978-3-031-20064-9
isbn_ebook978-3-031-20065-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computer Vision – ECCV 2022影响因子(影响力)




书目名称Computer Vision – ECCV 2022影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2022网络公开度




书目名称Computer Vision – ECCV 2022网络公开度学科排名




书目名称Computer Vision – ECCV 2022被引频次




书目名称Computer Vision – ECCV 2022被引频次学科排名




书目名称Computer Vision – ECCV 2022年度引用




书目名称Computer Vision – ECCV 2022年度引用学科排名




书目名称Computer Vision – ECCV 2022读者反馈




书目名称Computer Vision – ECCV 2022读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:37:45 | 显示全部楼层
发表于 2025-3-22 03:51:23 | 显示全部楼层
,AdvDO: Realistic Adversarial Attacks for Trajectory Prediction,her prediction accuracy, few study the adversarial robustness of their methods. To bridge this gap, we propose to study the adversarial robustness of data-driven trajectory prediction systems. We devise an optimization-based adversarial attack framework that leverages a carefully-designed . to gener
发表于 2025-3-22 06:46:48 | 显示全部楼层
发表于 2025-3-22 09:05:16 | 显示全部楼层
One Size Does NOT Fit All: Data-Adaptive Adversarial Training,ne of the most effective ways to improve the model’s adversarial robustness, it usually yields models with lower natural accuracy. In this paper, we argue that, for the attackable examples, traditional adversarial training which utilizes a fixed size perturbation ball can create adversarial examples
发表于 2025-3-22 16:45:04 | 显示全部楼层
,UniCR: Universally Approximated Certified Robustness via Randomized Smoothing,ximated certified robustness (UniCR) framework, which can approximate the robustness certification of . input on . classifier against . . perturbations with noise generated by . continuous probability distribution. Compared with the state-of-the-art certified defenses, UniCR provides many significan
发表于 2025-3-22 19:24:54 | 显示全部楼层
发表于 2025-3-22 23:58:14 | 显示全部楼层
,Robust Network Architecture Search via Feature Distortion Restraining,domains. Most of existing methods improve model robustness from weight optimization, such as adversarial training. However, the architecture of DNNs is also a key factor to robustness, which is often neglected or underestimated. We propose Robust Network Architecture Search (RNAS) to obtain a robust
发表于 2025-3-23 04:12:52 | 显示全部楼层
,SecretGen: Privacy Recovery on Pre-trained Models via Distribution Discrimination,ned models are released online to facilitate further research. However, it raises extensive concerns on whether these pre-trained models would leak privacy-sensitive information of their training data. Thus, in this work, we aim to answer the following questions: “Can we effectively recover private
发表于 2025-3-23 07:41:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 19:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表