找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[复制链接]
楼主: Eisenhower
发表于 2025-3-28 17:26:59 | 显示全部楼层
,Dynamic Metric Learning with Cross-Level Concept Distillation,: we only pull closer positive pairs. To facilitate the cross-level semantic structure of the image representations, we propose a hierarchical concept refiner to construct multiple levels of concept embeddings of an image and then pull closer the distance of the corresponding concepts. Extensive exp
发表于 2025-3-28 20:44:15 | 显示全部楼层
发表于 2025-3-28 23:24:22 | 显示全部楼层
发表于 2025-3-29 06:29:01 | 显示全部楼层
发表于 2025-3-29 10:57:10 | 显示全部楼层
,Learning to Detect Every Thing in an Open World,eads to significant improvements on many datasets in the open-world instance segmentation task, outperforming baselines on cross-category generalization on COCO, as well as cross-dataset evaluation on UVO, Objects365, and Cityscapes. ..
发表于 2025-3-29 12:26:35 | 显示全部楼层
,KVT: ,-NN Attention for Boosting Vision Transformers,ar tokens from the keys for each query to compute the attention map. The proposed .-NN attention naturally inherits the local bias of CNNs without introducing convolutional operations, as nearby tokens tend to be more similar than others. In addition, the .-NN attention allows for the exploration of
发表于 2025-3-29 17:30:09 | 显示全部楼层
Registration Based Few-Shot Anomaly Detection,-training or parameter fine-tuning for new categories. Experimental results have shown that the proposed method outperforms the state-of-the-art FSAD methods by 3%–8% in AUC on the MVTec and MPDD benchmarks. Source code is available at: ..
发表于 2025-3-29 23:16:20 | 显示全部楼层
https://doi.org/10.1007/978-94-011-0505-7% for ViT-B, +0.5% for Swin-B), and especially enhance the advanced model VOLO-D5 to 87.3% that only uses ImageNet-1K data, and the superiority can also be maintained on out-of-distribution data and transferred to downstream tasks. The code is available at: ..
发表于 2025-3-30 03:10:53 | 显示全部楼层
David T. Kresge,J. Royce Ginn,John T. Grayllable learning process. We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets. Particularly, on the task of object detection, RBONNs have great generalization performance. Our code is open-sourced on ..
发表于 2025-3-30 06:18:38 | 显示全部楼层
International Economic Association Seriesconnections (...., temporal feedback connections) between layers. Interestingly, SNASNet found by our search algorithm achieves higher performance with backward connections, demonstrating the importance of designing SNN architecture for suitably using temporal information. We conduct extensive exper
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-9 10:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表