找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[复制链接]
楼主: exterminate
发表于 2025-3-23 10:54:04 | 显示全部楼层
,Addressing Heterogeneity in Federated Learning via Distributional Transformation,s shows that . outperforms state-of-the-art FL methods and data augmentation methods under various settings and different degrees of client distributional heterogeneity (e.g., for CelebA and 100% heterogeneity . has accuracy of 80.4% vs. 72.1% or lower for other SOTA approaches).
发表于 2025-3-23 17:51:02 | 显示全部楼层
发表于 2025-3-23 18:18:15 | 显示全部楼层
,Colorization for , Marine Plankton Images,ments and comparisons with state-of-the-art approaches are presented to show that our method achieves a substantial improvement over previous methods on color restoration of scientific plankton image data.
发表于 2025-3-24 01:26:46 | 显示全部楼层
发表于 2025-3-24 03:16:37 | 显示全部楼层
,A Cloud 3D Dataset and Application-Specific Learned Image Compression in Cloud 3D,hich makes it feasible to reduce the model complexity to accelerate compression computation. We evaluated our models on six gaming image datasets. The results show that our approach has similar rate-distortion performance as a state-of-the-art learned image compression algorithm, while obtaining abo
发表于 2025-3-24 07:44:43 | 显示全部楼层
,AutoTransition: Learning to Recommend Video Transition Effects,k. Then we propose a model to learn the matching correspondence from vision/audio inputs to video transitions. Specifically, the proposed model employs a multi-modal transformer to fuse vision and audio information, as well as capture the context cues in sequential transition outputs. Through both q
发表于 2025-3-24 11:10:28 | 显示全部楼层
发表于 2025-3-24 16:35:46 | 显示全部楼层
发表于 2025-3-24 20:09:11 | 显示全部楼层
发表于 2025-3-25 00:00:33 | 显示全部楼层
Stephan Neuhaus,Bernhard Plattnerctive for the probe’s future performance, ameliorating the sales forecasts of all state-of-the-art models on the recent VISUELLE fast-fashion dataset. We also show that POP reflects the ground-truth popularity of new styles (ensembles of clothing items) on the Fashion Forward benchmark, demonstratin
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 23:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表